
Number Systems
Integers, Bin/Oct/Hex, Codes

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

February 2025

https://mirjanastojilovic.github.io/cs173/index.html

A (Little) Bit of Information

▪ A bit is the most basic unit
of information in digital
computing and communication

▪ A logical state with one
of two possible values (binary)

▪ In modern devices, a bit typically corresponds to an electrical
state ON or OFF (charged or discharged, voltage high or low, etc.)

▪ Bits are small → so we group them into vectors or strings

CS-173, © EPFL, Spring 2025

1

0 0

0

1

Let’s Talk About…
…Number systems and codes

CS-173, © EPFL, Spring 2025

Learning Outcomes

▪ Familiarize with the general characteristics of
number systems (radix, weights, digit vectors…)

▪ Learn to represent decimal numbers as binary numbers

▪ Discover octal/hex systems and their relation to binary

▪ Master representations of nonnegative and signed binary numbers

▪ Perform sign extension and arithmetic shifts

▪ Discover some alternative number codes

CS-173, © EPFL, Spring 2025

Quick Outline

▪ Representations of nonnegative integers

▪ Transformations binary/octal/hex to/from decimal

▪ Transformations octal/hex to/from binary

▪ Representations of signed integers
• Sign-and-magnitude

• Two’s complement

▪ Range extension and arithmetic shifts

▪ Hamming, BCD, Gray codes

CS-173, © EPFL, Spring 2025

Digital Representations

▪ In mathematics, a tuple is a finite ordered sequence of elements
• An n-tuple is a tuple of n elements, where n is a nonnegative integer

▪ In a digital representation, a number is represented by
an ordered n-tuple
• Each element of the n-tuple is called a digit

• The n-tuple is called a digit vector (or string of digits)

• The number of digits n is called the precision of the representation

CS-173, © EPFL, Spring 2025

Representation of
Nonnegative Integers

CS-173, © EPFL, Spring 2025

Integer Digit-Vector

▪ Digit-vector (string) representing the integer is denoted by

▪ Least-significant digit (also called low-order digit):

▪ Most-significant digit (also called high-order digit):

CS-173, © EPFL, Spring 2025

zero-origin

Leftward-increasing indexing

Elements of a Number System

▪ The number system to represent the integer consists of
• The number of digits

• A set of numerical values for the digits
• If a set of values for a digit is , the cardinality of is

• A rule of interpretation

• Mapping between the set of digit-vector values and the set of integers

▪ Set size
• The set of integers is a finite set of at most elements

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

Elements of a Number System
Example: Decimal Number System

▪ Number of digits
• Can be any, but let us consider = 6 (e.g., 17, 9899, 676799, …)

• Leading zeros are irrelevant

▪ Digit set in decimal number system
• of cardinality 10

▪ The corresponding set size is one million values, from 0 to
•

CS-173, © EPFL, Spring 2025

(Non)Redundant Number Systems

▪ A number system is nonredundant if…
• …each digit-vector represents a different integer

• E.g., the decimal system is nonredundant as every number is unique

▪ Alternatively, a number system is redundant if…
• …there are integers represented by more than one digit-vector

CS-173, © EPFL, Spring 2025

Weighted (Positional) Number Systems

▪ Most frequently used number systems are weighted systems

▪ The rule of representation:

where is the weight-vector of size

▪ Equivalent formulation

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

Weighted (Positional) Number Systems
Example: Decimal Number System

▪ Weights are a power of 10. Example:
• Digit vector

• Weight vector

▪ When weights are of the format
• and

•

we have a radix number system

CS-173, © EPFL, Spring 2025

Radix Number Systems

▪ …are weighted number system in which the weight vector is
related to the radix vector

as follows

▪ Equivalent to

▪ E.g., in the decimal number system

CS-173, © EPFL, Spring 2025

Fixed- and Mixed-Radix Number Systems

▪ In a fixed-radix system, all elements of the radix-vector have
the same value r (the radix)

▪ The weight vector in a fixed-radix system

and the integer becomes

▪ In a mixed-radix system, the elements of the radix-vector differ
CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

Radix Number Systems
Example: Decimal Number System

▪ Characteristics of the decimal number system
• Radix

• Fixed-radix system

CS-173, © EPFL, Spring 2025

Number Systems

What fixed- and mixed-radix systems are most interesting to us?

CS-173, © EPFL, Spring 2025

Fixed

▪ Decimal – radix 10

▪ Binary – radix 2

▪ Octal – radix 8

▪ Hexadecimal – radix 16

Mixed

▪ E.g., time representation in terms of
hours/minutes/seconds

• Radix-vector

R = (24, 60, 60)

• Weight-vector

W = (3600, 60, 1)

▪ In a canonical number system, the set of values for a digit is

with , the corresponding element of the radix vector

▪ Canonical digit sets with fixed radix:
• Decimal: {0, 1, …, 9}; Binary: {0, 1}; Hexadecimal: {0, 1, 2, …, 15}

▪ Range of values of represented with n fixed-radix-r digits:

Canonical Number Systems

CS-173, © EPFL, Spring 2025

Conventional Number Systems

▪ A system with
• fixed positive radix r and

• a canonical set of digit values is called

a radix-r conventional number system

▪ These are by far the most commonly used number systems

CS-173, © EPFL, Spring 2025

Binary/Octal/Hexadecimal
to/from Decimal
Transformations of nonnegative numbers

CS-173, © EPFL, Spring 2025

Conversion Table
Up to 15

CS-173, © EPFL, Spring 2025

Decimal
Binary

4-digit vector
Octal

2-digit vector
Hexadecimal
1-digit vector

0 0000 00 0

1 0001 01 1

2 0010 02 2

3 0011 03 3

4 0100 04 4

5 0101 05 5

6 0110 06 6

7 0111 07 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

▪ The hexadecimal system
supplements 0-9 digits
with the letters A-F

▪ Programming languages
often use the prefix 0x to
denote a hexadecimal number

E
X

A
M

P
L

E
S

Transformations
Example: Binary/Decimal

▪ Converting from binary to decimal

▪ Converting from decimal to binary
• Digits can be computed as remainders of the long division by 2

CS-173, © EPFL, Spring 2025 Stop once zero

Least-significant binary digit

Most-significant binary digit

E
X

A
M

P
L

E
S

Transformations
Example: Octal/Decimal

▪ Converting from octal to decimal

▪ Converting from decimal to octal
• Digits can be computed as remainders of the long division by 8

CS-173, © EPFL, Spring 2025

Stop once zero

Least-significant octal digit

Most-significant octal digit

E
X

A
M

P
L

E
S

Transformations
Example: Hexadecimal/Decimal

▪ Converting from hexadecimal to decimal

▪ Converting from decimal to hexadecimal
• Digits can be computed as remainders of the long division by 16

CS-173, © EPFL, Spring 2025
Stop once zero

Least-significant hexadecimal digit

Most-significant hexadecimal digit

Octal/Hexadecimal
to/from Binary
Transformations of nonnegative numbers

CS-173, © EPFL, Spring 2025

Bit-Vector Representation

▪ For arithmetic operations
in radix-2/8/16 digital
systems, digit-vectors are
represented by bit-vectors

▪ Methodology
• A code for mapping a digit to a bit-vector is defined

• Digit-vector is obtained by mapping each of its digits following the code

CS-173, © EPFL, Spring 2025

1

0 0

0

1

Codes
Bit-Vector Representation

▪ Binary
• Digits 0 and 1 are represented by values 0 and 1, resp.

▪ Power-of-two radix (octal, hex)
• Digit is represented by a bit-vector

where bits,

such that

• E.g., digit in the hexadecimal (radix-16) format is represented by
a 4-bit binary vector/string

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

Transformations
Example: Binary/Octal

▪ Converting from binary to octal,
• Group every three binary digits into a single octal digit

▪ Converting from octal to binary
• Exactly the reverse, expand each octal digit into three binary digits

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

Transformations
Example: Binary/Hexadecimal

▪ Converting from binary to hexadecimal,
• Group every four binary digits into a single hexadecimal digit

▪ Converting from hexadecimal to binary
• Exactly the reverse, expand each hex digit into four binary digits

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025

Representation of
Signed Integers
Signed ~ Positive and Negative

• Sign and magnitude

• True and complement

CS-173, © EPFL, Spring 2025

Sign-and-Magnitude

CS-173, © EPFL, Spring 2025

Sign-and-Magnitude (SM)

▪ A signed integer is represented by a pair

where is the sign and is the magnitude (positive integer)

▪ Sign (positive, negative) is represented by a binary variable
• 0→ positive; 1 → negative

▪ Magnitude can be represented as any positive integer
• In a conventional radix-r system, the range of n-digit magnitude is

CS-173, © EPFL, Spring 2025

How is Zero Represented in SM?

▪ Two representations
• Positive zero

• Negative zero

▪ Is SM a redundant or nonredundant number system?

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

Sign-and-Magnitude
Examples

▪ Traditionally, the most-significant bit of a binary bit string
is used as the sign bit

▪ Examples:

CS-173, © EPFL, Spring 2025

Sign-and-Magnitude
Range

▪ Symmetrical number system
• Equal number of positive and negative integers

▪ An n-bit integer in sign-and-magnitude lies within the range

▪ Main disadvantage of SM: complex digital circuits for
arithmetic operations (addition, subtraction, etc.)

CS-173, © EPFL, Spring 2025

True-and-Complement

CS-173, © EPFL, Spring 2025

True-and-Complement (TC)

▪ No separation between
the representation of the sign
and the representation of
the magnitude
• Signed integer is represented

by a positive integer

CS-173, © EPFL, Spring 2025

True-and-complement system

Code (any of the number
systems for positive integers)

Positive integer

Digit-vector

Map 1

Map 2

Signed integer

True-and-Complement
Mapping

▪ A signed integer is represented by a positive integer :

is a positive integer called the complementation constant

▪ For , by the definition of the modulo function, we have

CS-173, © EPFL, Spring 2025

True form

Complement form

▪ Recall:

▪ To have an unambiguous representation, the two regions should
not overlap, translating to the following condition:

True-and-Complement
Unambiguous Representation

CS-173, © EPFL, Spring 2025

True form

Complement form

Overlap!

True-and-Complement
Converse Mapping

▪ Converse mapping:

▪ When , it is usually assigned to
• Asymmetrical representation, but simplifies sign detection

▪ The choice of defines a two’s complement system

CS-173, © EPFL, Spring 2025

Positive values

Negative values

Two’s Complement System

▪ Complementation constant

▪ Range is asymmetrical:

▪ The representation of zero is unique

CS-173, © EPFL, Spring 2025

0 0

True forms
(positive)

1 1

2 2

… …

Complement
forms

(negative)… …

-2

-1

Sign Detection
in Two’s Complement System

▪ Since and assuming the sign is 0 for positive
and 1 for negative numbers:

▪ Therefore, the sign is determined from the most-significant bit:

; equivalent to

CS-173, © EPFL, Spring 2025

Mapping from Bit-Vectors to Values
in Two’s Complement System

▪ Positive :

CS-173, © EPFL, Spring 2025

Two’s Complement

Binary Number System

Positive integer

Bit-vector

Map 1

Map 2

Signed integer

ZERO

Mapping from Bit-Vectors to Values
in Two’s Complement System

▪ Negative :

CS-173, © EPFL, Spring 2025

Two’s Complement

Binary Number System

Positive integer

Bit-vector

Map 1

Map 2

Signed integer

ONE

E
X

A
M

P
L

E
S

Mapping from Bit-Vectors to Values
Example: Two’s Complement System

▪ Examples

CS-173, © EPFL, Spring 2025

▪ Find

▪ As and are represented as and :

▪ Therefore, the change of sign operation
consists of subtracting from

the complementation constant

Change of Sign
in Two’s Complement System

CS-173, © EPFL, Spring 2025

Change of sign

Signed integer

Signed integer

Two’s Complement

Signed integer

Positive integer

E
X

A
M

P
L

E
S

Change of Sign Algorithm
in Two’s Complement System

▪ Recall: In a two’s complement system, the complement of an
-bit number is obtained by subtracting it from
• Equivalent to complementing each of the bits and

summing with +1 (proof in literature)

CS-173, © EPFL, Spring 2025

Complement

Add +1

Complement

Add +1

Change of
polarity

Change of
polarity

Range Extension
and Arithmetic Shifts

CS-173, © EPFL, Spring 2025

Range Extension

▪ Performed when a value represented by a digit-vector of bits
needs to be represented by a digit-vector of bits,

▪ Range extension is often performed in arithmetic operations

CS-173, © EPFL, Spring 2025

Range Extension Algorithm
in Sign-and-Magnitude System

▪ In sign-and-magnitude system,
the range-extension algorithm becomes

▪ Example:

CS-173, © EPFL, Spring 2025

Sign

Sign

Range Extension Algorithm
in Two’s Complement System

▪ In two’s complement system,
the range-extension algorithm becomes

▪ Example:

CS-173, © EPFL, Spring 2025

Arithmetic Shifts

▪ Two elementary transformations often used in arithmetic
operations are scaling (multiplying and dividing) by the radix

▪ Conventional radix-2 number system for integers:
• Left arithmetic shift: multiplication by 2

• Right arithmetic shift: division by 2

where the value of is such that it makes an integer

CS-173, © EPFL, Spring 2025

Left Arithmetic Shift
in Sign-and-Magnitude System

▪ Algorithm (assuming the overflow does not occur)

▪ Example:

CS-173, © EPFL, Spring 2025

Sign

Sign Lost ZERO

Sign

ZERO Lost

Sign

Right Arithmetic Shift
in Sign-and-Magnitude System

▪ Algorithm

▪ Example

CS-173, © EPFL, Spring 2025

Left Arithmetic Shift
in Two’s Complement System

▪ Algorithm (assuming the overflow does not occur)

▪ Examples:

CS-173, © EPFL, Spring 2025

Lost ZERO

Lost

Right Arithmetic Shift
in Two’s Complement System

▪ Algorithm

▪ Examples:

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025

Codes
Alternative Codes

CS-173, © EPFL, Spring 2025

Hamming Weight and Distance

▪ Named by Richard Hamming, inventor of
error-correcting codes which bear his name,
and of the aphorism "The Purpose of computing
is insight, not numbers," and many others.

▪ Hamming weight
• The number of binary ones (1) in a bit vector

• E.g.,

▪ Hamming distance between two equal-length bit vectors
• The number of positions in which they differ

• E.g.,
CS-173, © EPFL, Spring 2025

https://history.computer.org/pioneers/hamming.html

Binary Code for Decimal Numbers (BCD)
Conversion Algorithms

▪ BCD encodes decimal digits 0 through 9 by their 4-bit unsigned
binary representations, 0000 through 1001;
the code words 1010 through 1111 are not used

▪ Conversion algorithms:

CS-173, © EPFL, Spring 2025

1: i = 0;
2: Divide D by 10; D = the quotient
3: di = the remainder
4: i = i + 1
5: Go back to line 2 if i<=n-1

Given a binary value D, convert it into the
corresponding set of BCD digits

1: i = n-1; D = 0
2: Multiply D by 10
3: add di to D
4: i = i – 1
5: Go back to line 2 if i>=0

Given n BCD digits di, compute
the corresponding binary value D

Gray Code

▪ Invented by Frank Gray, a physicist and researcher at
Bell Labs who made numerous innovations in television,
both mechanical and electronic, and is remembered
for the Gray code.

▪ Gray code is an ordering of the binary numbers such that
two successive values differ in only one bit

▪ Gray codes are widely used to prevent spurious output
from electromechanical switches and to facilitate error
correction in digital communications

CS-173, © EPFL, Spring 2025

https://en.wikipedia.org/wiki/Frank_Gray_(researcher)
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Gray_code
https://en.wikipedia.org/wiki/Electromechanical
https://en.wikipedia.org/wiki/Switch
https://en.wikipedia.org/wiki/Error_correction

Gray Code
Conversion Algorithm

▪ Deriving a code word in an n-bit
Gray-code from the corresponding
n-bit binary code
• The bits of an n-bit binary or Gray

code are numbered from right to left,
from 0 to n-1

• Bit i of a Gray-code vector is 0 if bits
i and i+1 of the binary vector are
the same; else, bit i is 1;
• when i+1 = n, bit n of the binary vector

is considered to be zero

▪ Comparison of 3-bit binary
and Gray codes

CS-173, © EPFL, Spring 2025

Decimal Binary Gray

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

CS-173, © EPFL, Spring 2025

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 2: Number Systems and Codes
▪ 2.1–2.3
▪ 2.5
▪ 2.10
▪ 2.11

▪ Chapter 1: Preview of Basic Number
Representations and Arithmetic Algorithms
▪ 1.1
▪ 1.2
▪ 1.4

Glossary

▪ Precision

▪ Digit-vector

▪ Least-significant/most-significant bit

▪ (Non)Redundant

▪ Weighted

▪ Radix

▪ Canonical

▪ Conventional

▪ Sign-and-magnitude

▪ True-and-complement

▪ Two’s complement

▪ Range extension

▪ Arithmetic shifts

▪ Hamming weight

▪ Hamming distance

▪ Binary Code for Decimal (BCD)

▪ Gray code

CS-173, © EPFL, Spring 2025

