Number Systems

Integers, Bin/Oct/Hex, Codes

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic
February 2025

FUNDAMENTALﬂS))

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

A (Little) Bit of Information

= A bit is the most basic unit @
of information in digital __’_’._._. Q

computing and communication @

= A logical state with one _‘ @ @ ' ’ ',

of two possible values (binary)

= [n modern devices, a bit typically corresponds to an electrical
state ON or OFF (charged or discharged, voltage high or low, etc.)

= Bits are small — so we group them into vectors or strings

Let's Talk About...

..Number systems and codes

CS-173, © EPFL, Spring 2025

Learning Outcomes A

= Familiarize with the general characteristics of Py
number systems (radix, weights, digit vectors..) %

= |_earn to represent decimal numbers as binary numbers

= Discover octal/hex systems and their relation to binary

= Master representations of nonnegative and signed binary numbers
= Perform sign extension and arithmetic shifts

= Discover some alternative number codes

Quick Outline

= Representations of nonnegative integers

= Transformations binary/octal/hex to/from decimal

= Transformations octal/hex to/trom binary

= Representations of signed integers
« Sign-and-magnitude
« TwO's complement

= Range extension and arithmetic shifts

= Hamming, BCD, Gray codes

CS-173, © EPFL, Spring 2025

Digital Representations

» |In mathematics, a tuple is a finite ordered sequence of elements
« An n-tuple is a tuple of n elements, where n is a nonnegative integer

= [n a digital representation, a number is represented by
an ordered n-tuple
« Each element of the n-tuple is called a digit
« The n-tuple is called a digit vector (or string of digits)
« The number of digits n is called the precision of the representation

CS-173, © EPFL, Spring 2025

Representation of :
Nonnegative Integers

CS-173, © EPFL, Spring 2025

Integer Digit-Vector

= Digit-vector (string) representing the integer = is denoted by

X = (X1, Xn—2,.... X1, X0)

|— Zero-origin

Leftward-increasing indexing

= Least-significant digit (also called low-order digit): X
= Most-significant digit (also called high-order digit): X,,_;

CS-173, © EPFL, Spring 2025

Elements of a Number System

X = (Xn-1,Xn-2, ..., X1, X0)

= The number system to represent the integer x consists of
* The number of digits

A set of numerical values for the digits
- If a set of values for a digit X; is D;, the cardinality of D; is |D;|

* Arule of interpretation
« Mapping between the set of digit-vector values and the set of integers

= Set size
» The set of integers is a finite set of at mostK elements

n—1
K = Hi:O ’Dz|

CS-173, © EPFL, Spring 2025

Elements of a Number System

Example: Decimal Number System

X = (Xn-1,Xn-2, ..., X1, X0)

= Number of digits n
« Can be any, but let us consider n = 6 (e.g., 17,9899, 676799, ...)
 Leading zeros are irrelevant

EXAMPLES

= Digit set in decimal number system
«D; ={0,1,2,...,9} of cardinality 10

= The corresponding set size K is one million values, fromO0to K —1
« K =[], 10 =106

CS-173, © EPFL, Spring 2025

(Non)Redundant Number Systems

= A number system is nonredundant if...
« ..each digit-vector represents a different integer
« E.g, the decimal system is nonredundant as every number is unique

= Alternatively, a number system is redundant if...
o _there are integers represented by more than one digit-vector

CS-173, © EPFL, Spring 2025

Weighted (Positional) Number Systems

= Most frequently used number systems are weighted systems
= The rule of representation:

L = Zr?:_ol X W;

where W = (W,_1, W,_s, ..., W1, Ws) IS the weight-vector of size n
= Equivalent formulation

L = Xn—lwn—l + Xn—QWn—Q +--+F X5 W+ XOWO

CS-173, © EPFL, Spring 2025

Weighted (Positional) Number Systems

Example: Decimal Number System

= \Weights are a power of 10. Example:
» Digit vector X = (8,5,4,7,0,3)
. Weight vector W = (10°, 104,102,102, 10%, 109)

r=8x%x10°+5x10*+4x102+7x10%2+0 x 10} +3 x 10°

r = 85470319 [
= \When weights are of the format Wy =1

* Wo =1 and Wi =W;_1 X Ri_1
W, =W,_1R;i—1, 1 <1< n-—1

we have a radix number system

(7]
i
—
o
=
<
x
1]

CS-173, © EPFL, Spring 2025

Radix Number Systems

= _are weighted number system in which the weight vector is
related to the radix vector R = (R,,_1,R,,_2,..., R1, Rp)

as follows
Wo=1, W, =W, 1R;1, 1<:1<n-1

= Equivalent to -
W() — 1; Wz — Hj:O Rj

" E.g., in the decimal number system W, = 1; W; = []'_, 10

Fixed- and Mixed-Radix Number Systems

= |n a fixed-radix system, all elements of the radix-vector have
the same value r (the radix)

= The weight vector in a fixed-radix system
W= ("1t =2 .. ,r%rl1)
and the integer * becomes
r = Z?:_ol X; xr

* |n a mixed-radix system, the elements of the radix-vector ditfer

Radix Number Systems

Example: Decimal Number System

= Characteristics of the decimal number system
« Radix » =10
* Fixed-radix system

W = (1071, 1072, ..., 102,10, 1)

EXAMPLES

r =" X; x10°

854703 =8 x 10° +5 x 104 +4 x 103 +7x 102 + 0 x 10! +3 x 10°

CS-173, © EPFL, Spring 2025

Number Systems

What fixed- and mixed-radix systems are most interesting to us?

Fixed Mixed

= Decimal — radix 10 = £.g., time representation in terms of
. . hours/minutes/seconds
= Binary — radix 2

| « Radix-vector
= Octal — radix 8 R = (24, 60, 60)
» Hexadecimal — radix 16 » Weight-vector

W = (3600, 60, 1)

CS-173, © EPFL, Spring 2025

Canonical Number Systems

* |n a canonical number system, the set of values for a digit D; is

D;={0,1,...,R; — 1}

with |D;| = R; , the corresponding element of the radix vector

= Canonical digit sets with fixed radix:
« Decimal: {0, 1, .., 9}; Binary: {0, 1}, Hexadecimal: {0, 1, 2, ..., 15}

= Range of values of x represented with n fixed-radix-r digits:
0< < r*—1

CS-173, © EPFL, Spring 2025

Conventional Number Systems

= A system with
« fixed positive radix r and
 a canonical set of digit values is called

a radix-r conventional number system

= These are by far the most commonly used number systems

CS-173, © EPFL, Spring 2025

Binary/Octal/Hexadecimal |
to/from Decimal

Transformations of nonnegative numbers

CS-173, © EPFL, Spring 2025

Conversion Table

Upto 15

. Binary Octal Hexadecimal

Decimal 4-digit vector 2-digit vector 1-digit vector

0 0000 00 0

» The hexadecimal system w 0001 0 w
supplements 0-9 digits ’ 1o v ’

. 3 0011 03 3
W|th the |etter8 A-F 4 0100 04 4
i Pro . | 5 0107 05 5
gramming languages) 0110 0)
often use the prefix 0x to 7 0171 07 7
denote a hexadecimal number j]ggf]f j
10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1107 15 D

14 1110 16 E

15 1111 17 F

Transformations

Example: Binary/Decimal

= Converting from binary to decimal
100115 =1-2*4+0-2240-22+1-21 +1-2=1642+1 =19

= Converting from decimal to binary

* Digits can be computed as remainders of the long division by 2
179/2 =(89 remainder 1 [,east-sighificant binary digit
89)/2 =(44)remainder 1
remainder 0
22/2 = 11 remainder 0
11/2 = 5 remainder 1
5/2 = 2 remainder 1
2/2 = 1 remainder 0

1/2 = 0 remainder 1 Most-signhifiCant binary digit
Gtop ohCe zero

EXAMPLES

17919 = 101100114

CS-173, © EPFL, Spring 2025

Transformations

Example: Octal/Decimal

= Converting from octal to decimal
1357 =1-8°+3-8°+5-8' +7-8°=512+192+40+ 7 = 75149

= Converting from decimal to octal
* Digits can be computed as remainders of the long division by 8

EXAMPLES

751/8 = 93 remainder 7 [east-SighifiCant oCtal digit

93/8 = 11 remainder 5

11/8 = 1 remainder 3

1/8 = 0 remainder 1 [Most-SighifiCant oCtal digit
Gtop once zero

75119 = 13573

CS-173, © EPFL, Spring 2025

Transformations
Example: Hexadecimal/Decimal
= Converting from hexadecimal to decimal

AOF52, =10-16*+0-16>+15-16°>+5-16" +2- 16"
— 655360 + 3840 + 80 + 2 = 6592821,

EXAMPLES

= Converting from decimal to hexadecimal
» Digits can be computed as remainders of the long division by 16

659282/16 = 41205 remainder 2 [east-SighifiCant hexadeCimal digit
41205/16 = 2575 remainder 5

2575/16 = 160 remainder 15 65928219 = AOF5216
160/16 = 10 remainder 0
10/16 = 0 remainder 10 Most-sighifiCant hexadecCimal digit

Stop onhce zero
CS-173, © EPFL, Spring 2025

Octal/Hexadecimal]
to/from Binary

Transformations of nonnegative numbers

CS-173, © EPFL, Spring 2025

Bit-Vector Representation

= For arithmetic operations @
in radix-2/8/16 digital < A a
systems, digit-vectors are ®——‘—’——H—Q—‘—!-'-—@ @ | |
represented by bit-vectors ‘ ' ’ '

= Methodology
A code for mapping a digit to a bit-vector is defined
* Digit-vector is obtained by mapping each of its digits following the code

Codes

Bit-Vector Representation

= Binary
 Digits 0 and 1 are represented by values 0 and T, resp.
= Power-of-two radix r (octal, hex)
- Digit d is represented by a bit-vector (dy_1, ..., dg)
where k = logyr bits,

such that
d=>SF1d;2

« E.g., digit D¢ in the hexadecimal (radix-16) format is represented by
a 4-bit binary vector/string 1101,

Transformations

Example: Binary/Octal

= Converting from binary to octal, k = log, 8 = 3
« Group every three binary digits into a single octal digit

0100001001105 :.000 100 110, = I0468

EXAMPLES

= Converting from octal to binary
« Exactly the reverse, expand each octal digit into three binary digits

CS-173, © EPFL, Spring 2025

Transformations

Example: Binary/Hexadecimal

= Converting from binary to hexadecimal, ¥ = log, 16 = 4
« Group every four binary digits into a single hexadecimal digit

10111110101011015 = . 1110 1010 1101, = lEAD16

EXAMPLES

= Converting from hexadecimal to binary
« Exactly the reverse, expand each hex digit into four binary digits

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025

Representation of
Signed Integers

Signed ~ Positive and Negative
* Sign and magnitude

* True and complement

CS-173, © EPFL, Spring 2025

s e P % e e s ST

A — SRS
®] (av]
SO0 ® — ® G
- ® &
ST) QOO ® «
© - ® -
— () ®
!)
o O
«— —
O ®
(&) S O c
O
O o o ®

O A SRS

o i <«i

(&)

A A1 OO A A OO ®

(&) — ® <« e B | S —

O A A OO D (o) - ®

— o © o0 o (a) - ®

o ® o ® > i ~— O

S - O ®

) ® © ® (o) S >

> — ® o ©® ™ o © S

T OO A ® S S)
™ T O ® e D — O «—

(e —A - © (&) i i — (&)

— T OOl o ® ® o 100 ®

—) — — 1 ® ©

1 ® o O OO — ® —

O (a) s ™) —HAIOO® —

— e — D o

— —)

(e ™) (o) — o o O v >

O H O A ® <« A R B I — ®
— (&) A OOTATAS H ©

A A AT O A OO I ® © — © O

Sign-and-Magnitude

« =

,_ela

® DO

CS-173, © EPFL, Spring 2025

Sign-and-Magnitude (SM)

= A signed integer x is represented by a pair
(Ts, Tm,)

where z; is the sign and z,, is the magnitude (positive integer)

= Sign (positive, negative) is represented by a binary variable
 0— positive; T — negative

= Magnitude can be represented as any positive integer
* In a conventional radix-r system, the range of n-digit magnitude is

0<zx,, <rt—1

CS-173, © EPFL, Spring 2025

How is Zero Represented in SM?

* TWO representations
« Positive zero

rs = 0,2, =0
* Negative zero

rzs=1,2, =0

» |s SM a redundant or nonredundant number system?

CS-173, © EPFL, Spring 2025

Sign-and-Magnitude

Examples

= Traditionally, the most-significant bit of a binary bit string
IS used as the sign bit

= Examples:
010101015 = 48519 110101015 = —851¢

011111115 = 412749 111111115 = —1274¢
000000002 = +019 100000002 = —019

EXAMPLES

CS-173, © EPFL, Spring 2025

Sign-and-Magnitude

Range

» Symmetrical number system
« Equal number of positive and negative integers

= An n-bit integer in sign-and-magnitude lies within the range

—(2n=t —1), 42"t = 1)

= Main disadvantage of SM: complex digital circuits for
arithmetic operations (addition, subtraction, etc.)

s e P % e e s ST

A — SRS
®] (av]
SO0 ® — ® G
- ® &
ST) QOO ® «
© - ® -
— () ®
!)
o O
«— —
O ®
(&) S O c
O
O o o ®

O A SRS

A A1 OO A A OO ®
(&) — ® <« e B | S —
O A A OO (o) (o) - ®
— o © o0 o (a) - ®
o ® o ® > i ~— O
S - O ®
) © © ® > S >
> — ® o ©® ™ o © S
T OO A ® S S)
O A ® e — —
(e —A - © (&) i i — (&)
— T OOl o ® ® o 100 ®
— > — — - ® =
1 ® o O OO — ® —
® o > - AT O
— v - A D >
— —)
(e ™) (o) — o o O v >
O H O A ® <« A R B I — ®
— (&) A OOTATAS H ©
A A AT O IO ® © — ® O

True-and-Complement

o i <«i

(&)

« =

,_ela

® DO

CS-173, © EPFL, Spring 2025

True-and-Complement (TC)

= No separation between 1

the representation of the sign] S s
and the rgpresentahon Of . True-and-complement system i Map 1
the magnitude

- Signed integer is represented f’fRJ Positive integer

by a positive integer Code (any of the number |

systems for positive integers) , Map 2

X

CS-173, © EPFL, Spring 2025

True-and-Complement

Mapping

» A signed integer = is represented by a positive integer zr :
rr =2 mod C

(' is a positive integer called the complementation constant

= For |z| < C, by the definition of the modulo function, we have

{x it x > 0 True form
LR —

C—lz|=C+=z ifx <0 Complement form

CS-173, © EPFL, Spring 2025

True-and-Complement

Unambiguous Representation

. .
Recall. X it x > 0 True form
LR = .
C—lx|=C+2z ifx <0 Complement form
i___'l
| C-ldl
2 1 ¢

L__1™\ Overlap!

= To have an unambiguous representation, the two regions should
not overlap, translating to the following condition:

max |x| < C/2

CS-173, © EPFL, Spring 2025

True-and-Complement

Converse Mapping

= Converse mapping:
PpINg {a:-R if xp < C/2 Positive values
x p—

zr—C ifzr>C/2 Negative values

= When zgr = C/2 | itis usually assignedto == -C/2
- Asymmetrical representation, but simplifies sign detection

= The choice of C' =2"defines atwo’s complement system

CS-173, © EPFL, Spring 2025

Two’'s Complement System

= Complementation constant

X LR
0 0
C — 2?1 1 True forms
2 2 (positive)
. o Ir'pR =
= Range is asymmetrical: pot_1 emet_g
_2n—1 2fn—1
2?’L—] g T S 2??/—1 _ 1 _(2n—1 _ 1) 2n—1 | Corpoprlrenrgent
(negative)
2 on—92 |xrp=2"—|z|
= The representation of zero is unique L 21

CS-173, © EPFL, Spring 2025

Sign Detection

in Two's Complement System

» Since |z| < C/2 and assuming the sign is O for positive
and 1 for negative numbers:

» Il(.ilf)_ 0 if:CR<C/2
ST itag > o)

= Therefore, the sign is determined from the most-significant bit:

| {0 if X, ;=0
sign(x) =

| X, =1 equivalent to sign(z) = X,

Mapping from Bit-Vectors to Values

in Two's Complement System

= Positive z :

I —=TR

CS-173, © EPFL, Spring 2025

Binary Number System . Map 2
\ Bit-vector
X
~
~
~
~
= ~

h Se 7/

Mapping from Bit-Vectors to Values

in Two’s Complement System e !

* Negative = :

n—1
r=rp-C=Y X2 -9

|
|
I |
0 i Two’s Complement i Map 1 :
2 R j Pose reege :
_ : itive i Y
— X, 2" 1 4 § X2t -2 AT |
ONE =0 : Binary Number System ' Map 2 ,I
n—2 S I
__ on—1) n |
= 2 + E :X%Q — 2 \ Bit-vector ,'
1=0 I
X I
n—2 “ |
. ~
_9n— 1 i § ,X 27, — X, 12n—1 14 § :XZQZ \\\ ,I
CS-173, © EPFL, Spring 2025 i=0 RS /

Mapping from Bit-Vectors to Values

Example: Two’'s Complement System

= Examples

X =0110115 =0-2541-2441-2340-2241-21+1-20 = 164+8+2+1 = 274,
X =11011o = —-1-2441-2340-2241-214+1-20 = —164+8+2+1 = —51,

EXAMPLES

X = 100000005, = —1-27 = —1281,
X =100000115 = —1-274+1-24+1-29= —128 +2+ 1 = —125¢,

CS-173, © EPFL, Spring 2025

Change of Sign

in Two's Complement System

s Find 2 = -z i Change of sign i

J Cigned integer

Z=—x
» As z and z are represented as zr and zgr: r=—a
zp=(—x)r = (—z) mod C \ Gigned integer
=C—(x mod C) TTTTTTTTTTTTTTTTTTTTTTOOS

=(C — IR
= Therefore, the change of sign operation
consists of subtracting *r from
the complementation constant C = ()R

] Positive integer

CS-173, © EPFL, Spring 2025

Change of Sign Algorithm

in Two's Complement System

= Recall: In a two's complement system, the complement of an
n-bit number is obtained by subtracting it from 2"

« Equivalent to complementing each of the n bits and
summing with +1 (proof in literature)

EXAMPLES

1710 = 000100015 —9910 = 100111015
Change of l Complement Change of l Complement
polarity polarity
11101110 01100010
+1 Add+1 +1 Add +1

11101111, = —174¢ 01100011 = 49949

CS-173, © EPFL, Spring 2025

A A OO A A OO H®
A OO O

> — ® o S - e o I
O H AT O OO (e > —H ® — o
— o © oo o (a 9] - ® 1 (aw)
—t e O & © > — I p— (o) o ® — ® <« G
O HOO S - o &
> > © o O (a™) S) (a) > OO ®
(&) — © SIS <« SO (S) © - ® -
A OO A ® SO ® O
O ® () — — -

O —A (o] i <~ — > SO

— S SR o I I O ® > A Q0 ® i —

— (an] — — - o i
— ® OO0 — (&) — - - O ® — S

® — > - A ~
— e e — o A O (S8
— — > O O S
O O - o o O v O O A oSO
O H O 1O © «— oS R o I I I ~ — o o S

— () A TATAD ® > - o &
A A AT O IO ® ® — ® (ae) i ®

Range Extension

and Arithmetic Shifts

CS-173, © EPFL, Spring 2025

Range Extension

= Performed when a value x represented by a digit-vector of n bits
needs to be represented by a digit-vector of m bits, m > n

= Range extension is often performed in arithmetic operations

Range Extension Algorithm

in Sign-and-Magnitude System
= |[n sign-and-magnitude system,
the range-extension algorithm becomes

2s = Xg Sign

Z; :0, =M — 1,m—2,...,n Ls Xpo1 Xp—2 X0

Zf,; :XZ', i:n—l,...,() ol
0 0 0
= Example: \ \ \
X = 11011012 — —4510 Zg Livr—1 Zn_|_1 Ly Lin—1 Lo Z0

X =1001011019 = —4549

CS-173, © EPFL, Spring 2025

Range Extension Algorithm

in Two's Complement System

» [n two's complement system,

the range-extension algorithm becomes

Zi=Xp_1,t=m—1,m—2,....n

Zf,;:X@', i:n—l,...,O

= Example:

X = 101013 = —1149
X =111101015 = —1149

Arithmetic Shifts

= TWo elementary transformations often used in arithmetic
operations are scaling (multiplying and dividing) by the radix

= Conventional radix-2 number system for integers:
* Left arithmetic shift: multiplication by 2

z =2
* Right arithmetic shift: division by 2
z=2"1lx—¢€ | <1
where the value of € is such that it makes z an integer

CS-173, © EPFL, Spring 2025

Left Arithmetic Shift

in Sign-and-Magnitude System

= Algorithm (assuming the overflow does not occur)

Zs = Is Sign T
Z?;_|_1 :X,L', 7::0,...,?’2,—2
Zo =0 gigh [ost //

= Example: v Zur Zos.

X = 1001011015 = —454,
SL(X) = 1010110105 = —901,

CS-173, © EPFL, Spring 2025

Right Arithmetic Shift

in Sign-and-Magnitude System

= Algorithm

Zg = g Sigh
Zf,;_l — X,,;, 1= 1, N 1
Lpn—1 =

= Example
X = 1001011015 = —4519
SR(X) = 100010110, = —221

CS-173, © EPFL, Spring 2025

\

[ost

Xn-1 - Xy Xo
Zn—l Zn—2 ce Zl

20

Left Arithmetic Shift

in Two's Complement System

= Algorithm (assuming the overflow does not occur)

Zi+1 — XZ', 1= O,...,?’L— 2

Zo =10
LOSt
» Examples:
X = 0011012 — 1310
SL(X) = 0]_]_0]_02 — 2610 'n, 1 Zn 2 1

Y = 1101015 = —114,
SL(Y) = 1010105 = —224,

CS-173, © EPFL, Spring 2025

Right Arithmetic Shift

in Two's Complement System

= Algorithm

Ln—1=Xp1
Zi—l — X,,;, 1 = 1, ceey T — 1

= Examples:
X = 0011015 = 1349
SR(X) = 0001105 = 61
Y =1101015 = —1149
SR(Y) = 1110105 = —64¢

CS-173, © EPFL, Spring 2025

Xp—1 Xn—2 - X1 Xo

\

ann2

1

\

[Lost
0

CS-173, © EPFL, Spring 2025

Codes

Alternative Codes

CS-173, © EPFL, Spring 2025

Hamming Weight and Distance

= Named by Richard Hamming, inventor of
error-correcting codes which bear his name,
and of the aphorism "The Purpose of computing
iS insight, not numbers,” and many others.

= Hamming weight
« The number of binary ones (1) in a bit vector
« E.g, HW(11010101) =5

= Hamming distance between two equal-length bit vectors
* The number of positions in which they differ
* £.9., HD(11010101,01000111) = 3

CS-173, © EPFL, Spring 2025

https://history.computer.org/pioneers/hamming.html

Binary Code for Decimal Numbers (BCD)

Conversion Algorithms

» BCD encodes decimal digits 0 through 9 by their 4-bit unsigned
binary representations, 0000 through 1001;
the code words 1070 through 1111 are not used

= Conversion algorithms:

Given n BCD digits di, compute
the corresponding binary value D

Given a binary value D, convert it into the
corresponding set of BCD digits

1: 1 =n-1; D =20

: Multiply D by 10

: add di to D

r1i=1-1

: Go back to line 2 if i>=0

ui b w N

1 = 0;

: Divide D by 10; D = the quotient
: di = the remainder

ri1i=1+1

: Go back to line 2 if i<=n-1

uih WN R

Gray Code

» Invented by Frank Gray, a physicist and researcher at
Bell Labs who made numerous innovations in television,
photh mechanical and electronic, and is remembered

for the Gray code.

= Gray code is an ordering of the binary numbers such that
two successive values differ in only one bit

= Gray codes are widely used to prevent spurious output
from electromechanical switches and to facilitate error
correction in digital communications

CS-173, © EPFL, Spring 2025

https://en.wikipedia.org/wiki/Frank_Gray_(researcher)
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Gray_code
https://en.wikipedia.org/wiki/Electromechanical
https://en.wikipedia.org/wiki/Switch
https://en.wikipedia.org/wiki/Error_correction

Gray Code

Conversion Algorithm

= Deriving a code word in an n-bit = Comparison of 3-bit binary
Gray-code from the corresponding and Gray codes
n-bit binary code
* The bits of an n-bit binary or Gray Decimal _ Binary SIgH
code are numbered from right to left, ? 88? 88?
from O to n-1 , o IR
* Bitiof a Gray-code vector is O if bits 3 011 010
| and i+1 of the binary vector are 4 100 N
the same; else, bitiis T; Z 1?; 1;}
« when i+1 = n, bit n of the binary vector . 11" 100

IS considered to be zero

CS-173, © EPFL, Spring 2025

Literature

Digital Arithmetic

W e —

= Chapter 2: Number Systems and Codes = Chapter 1: Preview of Basic Number
= 2.1-2.3 Representations and Arithmetic Algorithms
= 25 = 1.
= 210 = 12
= 277 = 14

CS-173, © EPFL, Spring 2025

Glossary

Precision

Digit-vector

True-and-complement

L east-significant/most-significant bit
(Non)Redundant

Weighted

Radix

Canonical

Conventional

Sign-and-magnitude

CS-173, © EPFL, Spring 2025

Two's complement

Range extension
Arithmetic shifts

Hamming weight

Hamming distance

Binary Code for Decimal (BCD)

Gray code

