

Number Systems

Integers, Bin/Oct/Hex, Codes

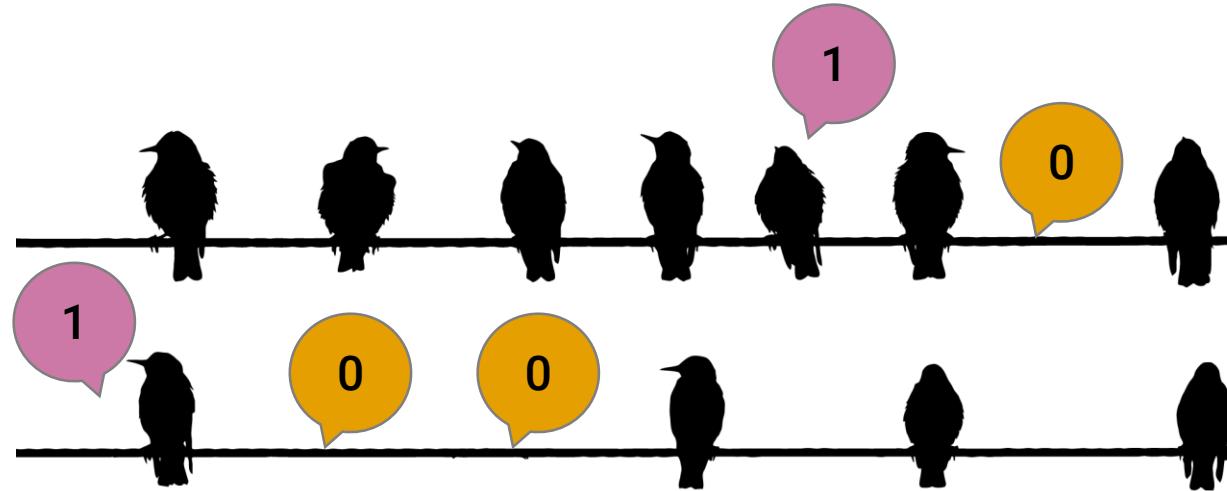
CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

February 2025

A (Little) Bit of Information

- **A bit** is the most basic unit of information in digital computing and communication
- A logical state with one of two possible values (**binary**)
- In modern devices, a bit typically corresponds to an electrical state ON or OFF (charged or discharged, voltage high or low, etc.)
- Bits are small → so we group them into vectors or strings

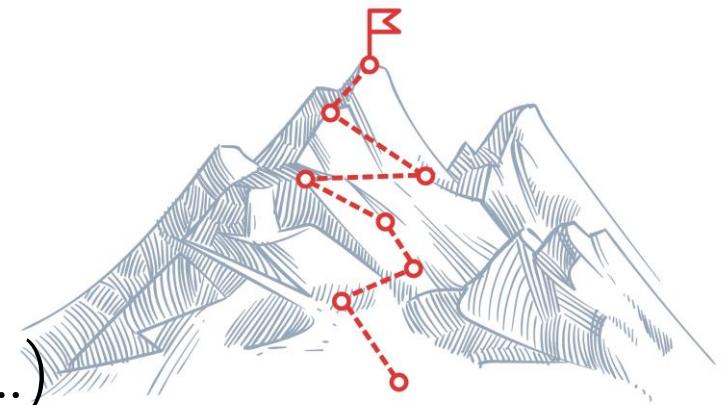


Let's Talk About...

...Number systems and codes

Learning Outcomes

- Familiarize with the general characteristics of number systems (radix, weights, digit vectors...)
- Learn to represent decimal numbers as binary numbers
- Discover octal/hex systems and their relation to binary
- Master representations of nonnegative and signed binary numbers
- Perform sign extension and arithmetic shifts
- Discover some alternative number codes



Quick Outline

- Representations of nonnegative integers
- Transformations binary/octal/hex to/from decimal
- Transformations octal/hex to/from binary
- Representations of signed integers
 - Sign-and-magnitude
 - Two's complement
- Range extension and arithmetic shifts
- Hamming, BCD, Gray codes

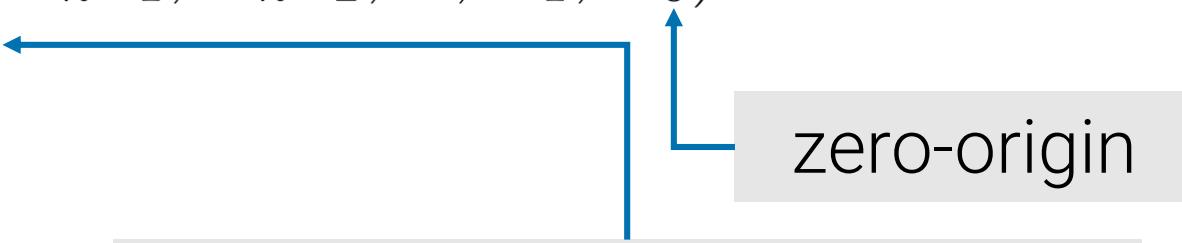
Digital Representations

- In mathematics, a **tuple** is a finite ordered sequence of elements
 - An **n-tuple** is a tuple of n elements, where n is a nonnegative integer
- In a **digital representation**, a number is represented by an **ordered n-tuple**
 - Each element of the n-tuple is called a **digit**
 - The n-tuple is called a **digit vector (or string of digits)**
 - The number of digits n is called the **precision** of the representation

Representation of Nonnegative Integers

Integer Digit-Vector

- **Digit-vector (string)** representing the integer x is denoted by

$$X = (X_{n-1}, X_{n-2}, \dots, X_1, X_0)$$


Leftward-increasing indexing

zero-origin

- **Least-significant** digit (also called low-order digit): X_0
- **Most-significant** digit (also called high-order digit): X_{n-1}

Elements of a Number System

$$X = (X_{n-1}, X_{n-2}, \dots, X_1, X_0)$$

- The number system to represent the integer x consists of
 - The number of **digits** n
 - A set of numerical **values** for the digits
 - If a **set of values for a digit** X_i is D_i , the cardinality of D_i is $|D_i|$
 - A rule of **interpretation**
 - Mapping between the set of digit-vector values and the set of integers
- **Set size**
 - The set of integers is a finite set of at most K elements

$$K = \prod_{i=0}^{n-1} |D_i|$$

Elements of a Number System

Example: Decimal Number System

$$X = (X_{n-1}, X_{n-2}, \dots, X_1, X_0)$$

- Number of digits n
 - Can be any, but let us consider $n = 6$ (e.g., 17, 9899, 676799, ...)
 - Leading zeros are irrelevant
- Digit set in decimal number system
 - $D_i = \{0, 1, 2, \dots, 9\}$ of cardinality 10
- The corresponding set size K is one million values, from 0 to $K - 1$
 - $K = \prod_{i=0}^{n-1} 10 = 10^6$

(Non)Redundant Number Systems

- A number system is **nonredundant** if...
 - ...each digit-vector represents a **different** integer
 - E.g., the decimal system is nonredundant as every number is unique
- Alternatively, a number system is **redundant** if...
 - ...there are integers represented by **more than one** digit-vector

Weighted (Positional) Number Systems

- Most frequently used number systems are **weighted systems**
- The rule of representation:

$$x = \sum_{i=0}^{n-1} X_i W_i$$

where $W = (W_{n-1}, W_{n-2}, \dots, W_1, W_0)$ is the **weight-vector** of size n

- Equivalent formulation

$$x = X_{n-1}W_{n-1} + X_{n-2}W_{n-2} + \dots + X_1W_1 + X_0W_0$$

Weighted (Positional) Number Systems

Example: Decimal Number System

- Weights are a power of 10. Example:

- Digit vector $X = (8, 5, 4, 7, 0, 3)$
- Weight vector $W = (10^5, 10^4, 10^3, 10^2, 10^1, 10^0)$

$$x = 8 \times 10^5 + 5 \times 10^4 + 4 \times 10^3 + 7 \times 10^2 + 0 \times 10^1 + 3 \times 10^0$$
$$x = 854703_{10}$$

- When weights are of the format
 - $W_0 = 1$ and
 - $W_i = W_{i-1}R_{i-1}$, $1 \leq i \leq n - 1$

$$W_0 = 1$$
$$W_i = W_{i-1} \times R_{i-1}$$

we have a **radix number system**

Radix Number Systems

- ...are weighted number system in which the weight vector is related to the **radix vector** $R = (R_{n-1}, R_{n-2}, \dots, R_1, R_0)$ as follows

$$W_0 = 1; \quad W_i = W_{i-1}R_{i-1}, \quad 1 \leq i \leq n - 1$$

- Equivalent to

$$W_0 = 1; \quad W_i = \prod_{j=0}^{i-1} R_j$$

- E.g., in the decimal number system $W_0 = 1; W_i = \prod_{j=0}^{i-1} 10$

Fixed- and Mixed-Radix Number Systems

- In a **fixed-radix** system, all elements of the radix-vector have the same value **r (the radix)**
- The weight vector in a fixed-radix system

$$W = (r^{n-1}, r^{n-2}, \dots, r^2, r^1, 1)$$

and the integer x becomes

$$x = \sum_{i=0}^{n-1} X_i \times r^i$$

- In a mixed-radix system, the elements of the radix-vector differ

Radix Number Systems

Example: Decimal Number System

- Characteristics of the decimal number system

- Radix $r = 10$
- **Fixed-radix** system

$$W = (10^{n-1}, 10^{n-2}, \dots, 10^2, 10^1, 1)$$

$$x = \sum_{i=0}^{n-1} X_i \times 10^i$$

$$854703 = 8 \times 10^5 + 5 \times 10^4 + 4 \times 10^3 + 7 \times 10^2 + 0 \times 10^1 + 3 \times 10^0$$

Number Systems

What fixed- and mixed-radix systems are most interesting to us?

Fixed

- Decimal – radix 10
- Binary – radix 2
- Octal – radix 8
- Hexadecimal – radix 16

Mixed

- E.g., time representation in terms of hours/minutes/seconds
 - Radix-vector
 $R = (24, 60, 60)$
 - Weight-vector
 $W = (3600, 60, 1)$

Canonical Number Systems

- In a **canonical** number system, the set of values for a digit D_i is

$$D_i = \{0, 1, \dots, R_i - 1\}$$

with $|D_i| = R_i$, the corresponding element of the radix vector

- Canonical digit sets with fixed radix:
 - Decimal: $\{0, 1, \dots, 9\}$; Binary: $\{0, 1\}$; Hexadecimal: $\{0, 1, 2, \dots, 15\}$
- Range of values of x represented with **n fixed-radix-r digits**:

$$0 \leq x \leq r^n - 1$$

Conventional Number Systems

- A system with
 - fixed positive radix r and
 - a canonical set of digit values is called
a radix- r conventional number system
- These are by far the most commonly used number systems

Binary/Octal/Hexadecimal to/from Decimal

Transformations of nonnegative numbers

Conversion Table

Up to 15

- The hexadecimal system supplements 0-9 digits with the letters A-F
- Programming languages often use the prefix **0x** to denote a hexadecimal number

Decimal	Binary 4-digit vector	Octal 2-digit vector	Hexadecimal 1-digit vector
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Transformations

Example: Binary/Decimal

- Converting from binary to decimal

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 16 + 2 + 1 = 19_{10}$$

- Converting from decimal to binary

- Digits can be computed as remainders of the long division by 2

$$179/2 = 89 \text{ remainder } 1$$

Least-significant binary digit

$$89/2 = 44 \text{ remainder } 1$$

$$44/2 = 22 \text{ remainder } 0$$

$$22/2 = 11 \text{ remainder } 0$$

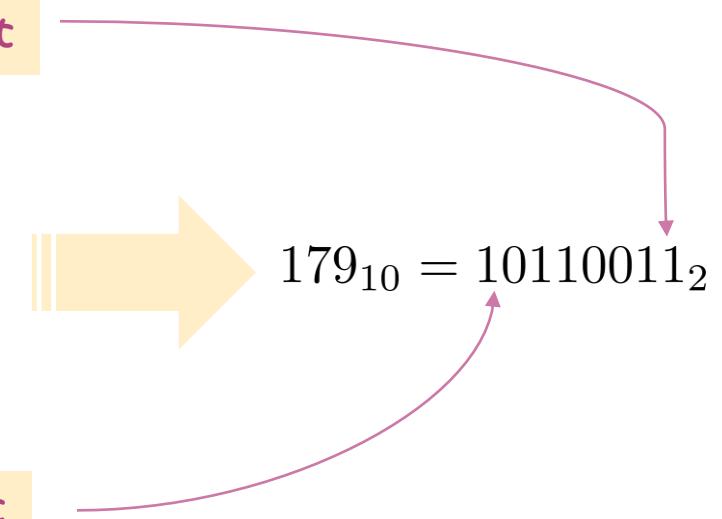
$$11/2 = 5 \text{ remainder } 1$$

$$5/2 = 2 \text{ remainder } 1$$

$$2/2 = 1 \text{ remainder } 0$$

$$1/2 = 0 \text{ remainder } 1$$

Stop once zero



Transformations

Example: Octal/Decimal

- Converting from octal to decimal

$$1357_8 = 1 \cdot 8^3 + 3 \cdot 8^2 + 5 \cdot 8^1 + 7 \cdot 8^0 = 512 + 192 + 40 + 7 = 751_{10}$$

- Converting from decimal to octal

- Digits can be computed as remainders of the long division by 8

$$751/8 = 93 \text{ remainder } 7 \quad \text{Least-significant octal digit}$$

$$93/8 = 11 \text{ remainder } 5$$

$$11/8 = 1 \text{ remainder } 3$$

$$1/8 = 0 \text{ remainder } 1$$

Stop once zero

$$751_{10} = 1357_8$$

Most-significant octal digit

Transformations

Example: Hexadecimal/Decimal

- Converting from hexadecimal to decimal

$$\begin{aligned}A0F52_{16} &= 10 \cdot 16^4 + 0 \cdot 16^3 + 15 \cdot 16^2 + 5 \cdot 16^1 + 2 \cdot 16^0 \\&= 655360 + 3840 + 80 + 2 = 659282_{10}\end{aligned}$$

- Converting from decimal to hexadecimal
 - Digits can be computed as remainders of the long division by 16

$$659282/16 = 41205 \text{ remainder } 2$$

Least-significant hexadecimal digit

$$41205/16 = 2575 \text{ remainder } 5$$

$$2575/16 = 160 \text{ remainder } 15$$

$$160/16 = 10 \text{ remainder } 0$$

$$10/16 = 0 \text{ remainder } 10$$

Stop once zero

$$659282_{10} = A0F52_{16}$$

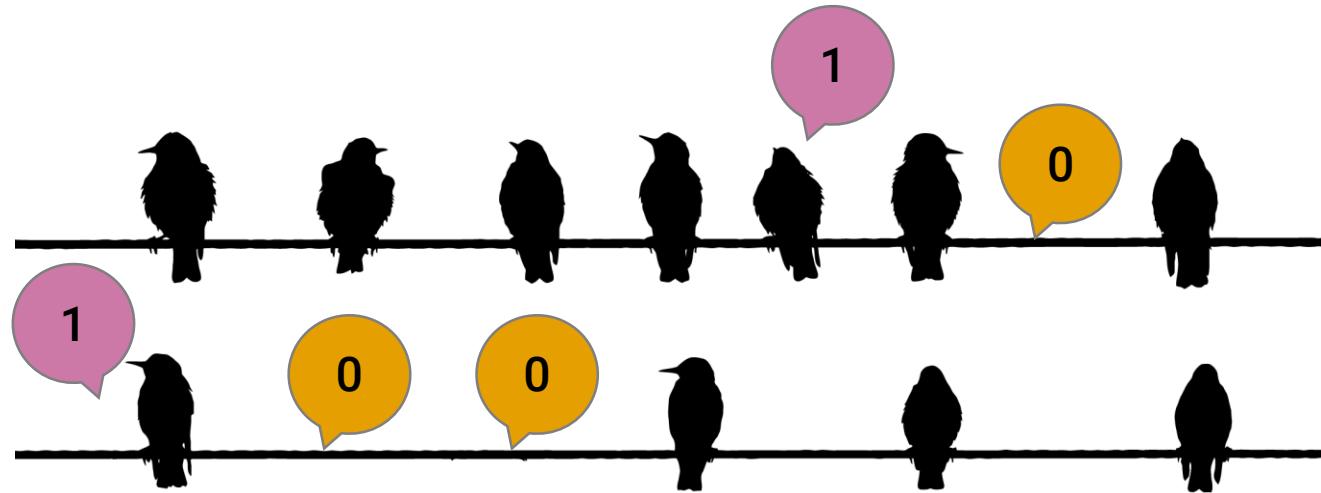
Most-significant hexadecimal digit

Octal/Hexadecimal to/from Binary

Transformations of nonnegative numbers

Bit-Vector Representation

- For arithmetic operations in radix-2/8/16 digital systems, digit-vectors are represented by bit-vectors
- Methodology
 - A **code** for mapping **a digit to a bit-vector** is defined
 - Digit-vector is obtained by mapping each of its digits following the code



Codes

Bit-Vector Representation

- Binary
 - Digits 0 and 1 are represented by values 0 and 1, resp.
- Power-of-two radix r (octal, hex)
 - Digit d is represented by a bit-vector (d_{k-1}, \dots, d_0) where $k = \log_2 r$ bits,
such that

$$d = \sum_{i=0}^{k-1} d_i 2^i$$

- E.g., digit D_{16} in the hexadecimal (radix-16) format is represented by a 4-bit binary vector/string 1101_2

Transformations

Example: Binary/Octal

- Converting from binary to octal, $k = \log_2 8 = 3$
 - Group every three binary digits into a single octal digit

$$010000100110_2 = \boxed{010} \boxed{000} \boxed{100} \boxed{110}_2 = \boxed{2} \boxed{0} \boxed{4} \boxed{6}_8$$

- Converting from octal to binary
 - Exactly the reverse, expand each octal digit into three binary digits

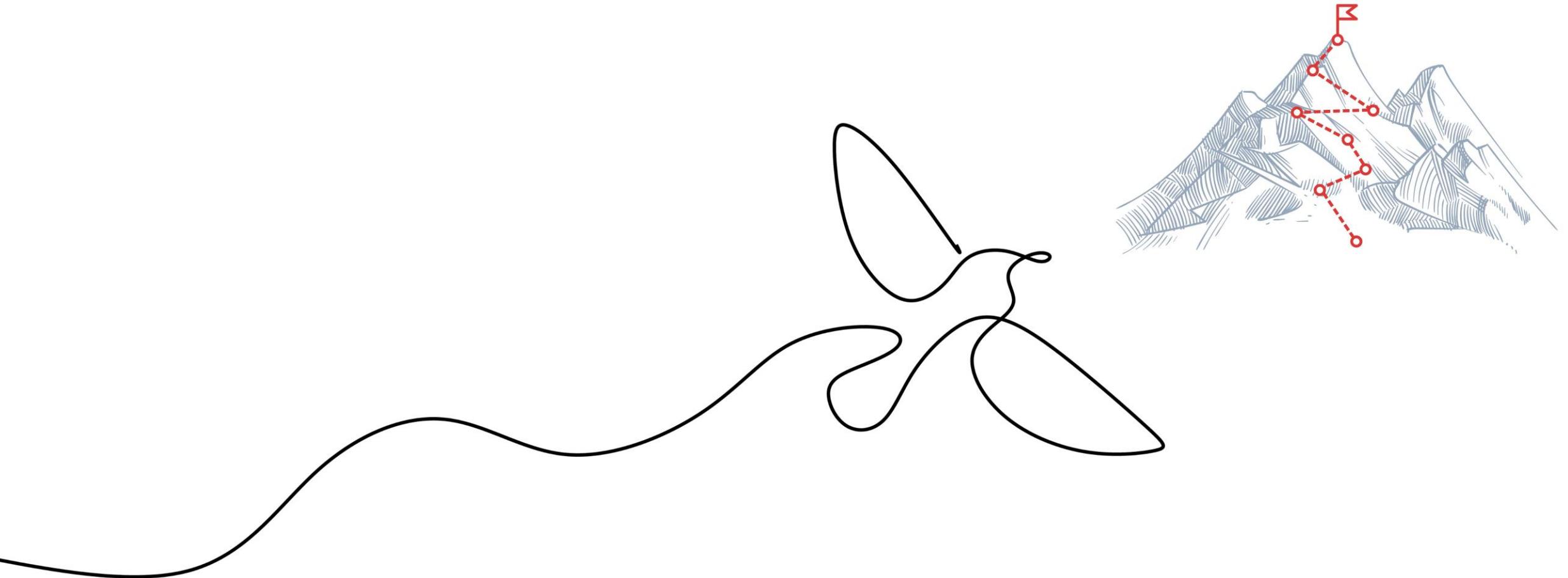
Transformations

Example: Binary/Hexadecimal

- Converting from binary to hexadecimal, $k = \log_2 16 = 4$
 - Group every four binary digits into a single hexadecimal digit

$$1011111010101101_2 = \boxed{1011} \ \boxed{1110} \ \boxed{1010} \ \boxed{1101}_2 = \boxed{\text{B}} \ \boxed{\text{E}} \ \boxed{\text{A}} \ \boxed{\text{D}}_{16}$$

- Converting from hexadecimal to binary
 - Exactly the reverse, expand each hex digit into four binary digits



Representation of Signed Integers

Signed ~ Positive and Negative

- Sign and magnitude
- True and complement

Sign-and-Magnitude

Sign-and-Magnitude (SM)

- A signed integer x is represented by a pair

$$(x_s, x_m)$$

where x_s is the **sign** and x_m is the **magnitude** (positive integer)

- Sign (positive, negative) is represented by a binary variable
 - 0 → positive; 1 → negative
- Magnitude can be represented as any positive integer
 - In a conventional radix- r system, the **range of n-digit magnitude** is

$$0 \leq x_m \leq r^n - 1$$

How is Zero Represented in SM?

- Two representations

- Positive zero

$$x_s = 0, x_m = 0$$

- Negative zero

$$x_s = 1, x_m = 0$$

- Is SM a redundant or nonredundant number system?

Sign-and-Magnitude

Examples

- Traditionally, the most-significant bit of a binary bit string is used as the sign bit
- Examples:

$$01010101_2 = +85_{10}$$

$$01111111_2 = +127_{10}$$

$$00000000_2 = +0_{10}$$

$$11010101_2 = -85_{10}$$

$$11111111_2 = -127_{10}$$

$$10000000_2 = -0_{10}$$

Sign-and-Magnitude

Range

- Symmetrical number system
 - Equal number of positive and negative integers
- An n-bit integer in sign-and-magnitude lies within the range

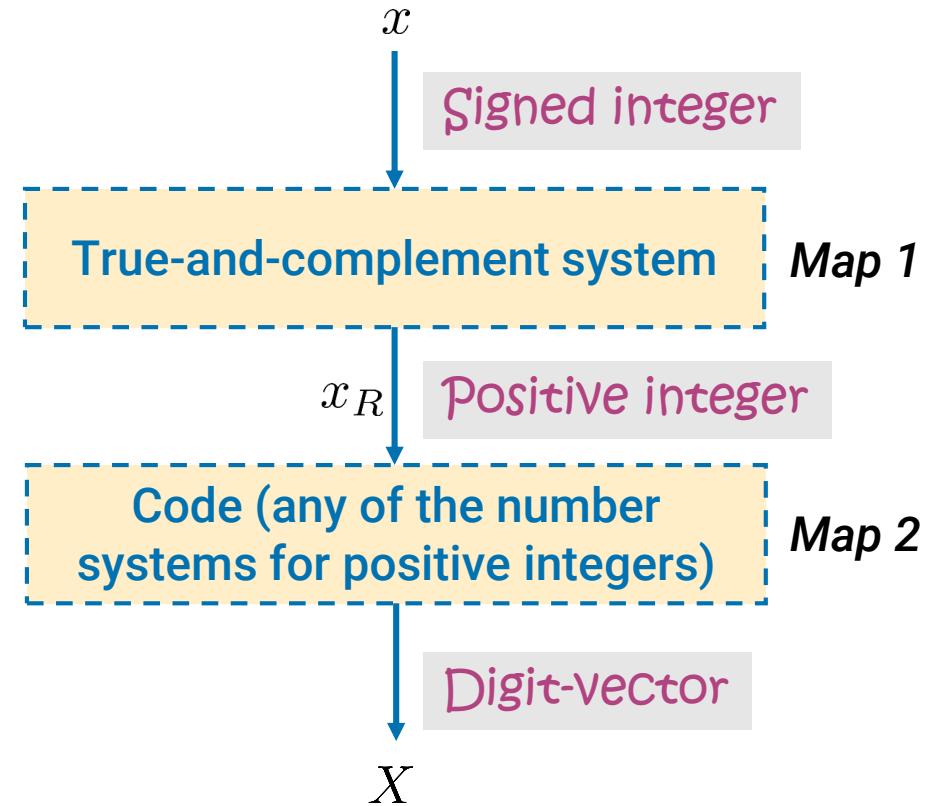
$$-(2^{n-1} - 1), +(2^{n-1} - 1)$$

- Main disadvantage of SM: complex digital circuits for arithmetic operations (addition, subtraction, etc.)

True-and-Complement

True-and-Complement (TC)

- No separation between the representation of the sign and the representation of the magnitude
 - **Signed** integer is represented by a **positive** integer



True-and-Complement

Mapping

- A signed integer x is represented by a positive integer x_R :

$$x_R = x \bmod C$$

C is a positive integer called the **complementation constant**

- For $|x| < C$, by the definition of the modulo function, we have

$$x_R = \begin{cases} x & \text{if } x \geq 0 \\ C - |x| = C + x & \text{if } x < 0 \end{cases}$$

True form
Complement form

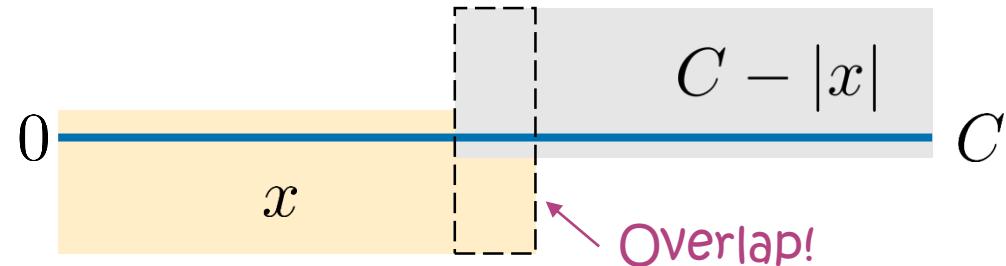
True-and-Complement

Unambiguous Representation

- Recall:

$$x_R = \begin{cases} x & \text{if } x \geq 0 \\ C - |x| = C + x & \text{if } x < 0 \end{cases}$$

True form
Complement form



- To have an unambiguous representation, the two regions should not overlap, translating to the following condition:

$$\max |x| < C/2$$

True-and-Complement

Converse Mapping

- Converse mapping:

$$x = \begin{cases} x_R & \text{if } x_R < C/2 \\ x_R - C & \text{if } x_R > C/2 \end{cases}$$

Positive values
Negative values

- When $x_R = C/2$, it is usually assigned to $x = -C/2$
 - Asymmetrical representation, but simplifies sign detection
- The choice of $C = 2^n$ defines a **two's complement** system

Two's Complement System

- Complementation constant

$$C = 2^n$$

- Range is **asymmetrical**:

$$-2^{n-1} \leq x \leq 2^{n-1} - 1$$

- The representation of zero is unique

x	x_R	
0	0	
1	1	
2	2	
...	...	
$2^{n-1} - 1$	$2^{n-1} - 1$	$x_R = x$
<hr/>		
-2^{n-1}	2^{n-1}	
$-(2^{n-1} - 1)$	$2^{n-1} + 1$	Complement forms (negative)
...	...	
-2	$2^n - 2$	$x_R = 2^n - x $
-1	$2^n - 1$	

Sign Detection

in Two's Complement System

- Since $|x| < C/2$ and assuming the sign is 0 for positive and 1 for negative numbers:

$$\text{sign}(x) = \begin{cases} 0 & \text{if } x_R < C/2 \\ 1 & \text{if } x_R \geq C/2 \end{cases}$$

- Therefore, the sign is determined from the most-significant bit:

$$\text{sign}(x) = \begin{cases} 0 & \text{if } X_{n-1} = 0 \\ 1 & \text{if } X_{n-1} = 1 \end{cases}$$

; equivalent to sign(x) = X_{n-1}

Mapping from Bit-Vectors to Values

in Two's Complement System

- Positive x :

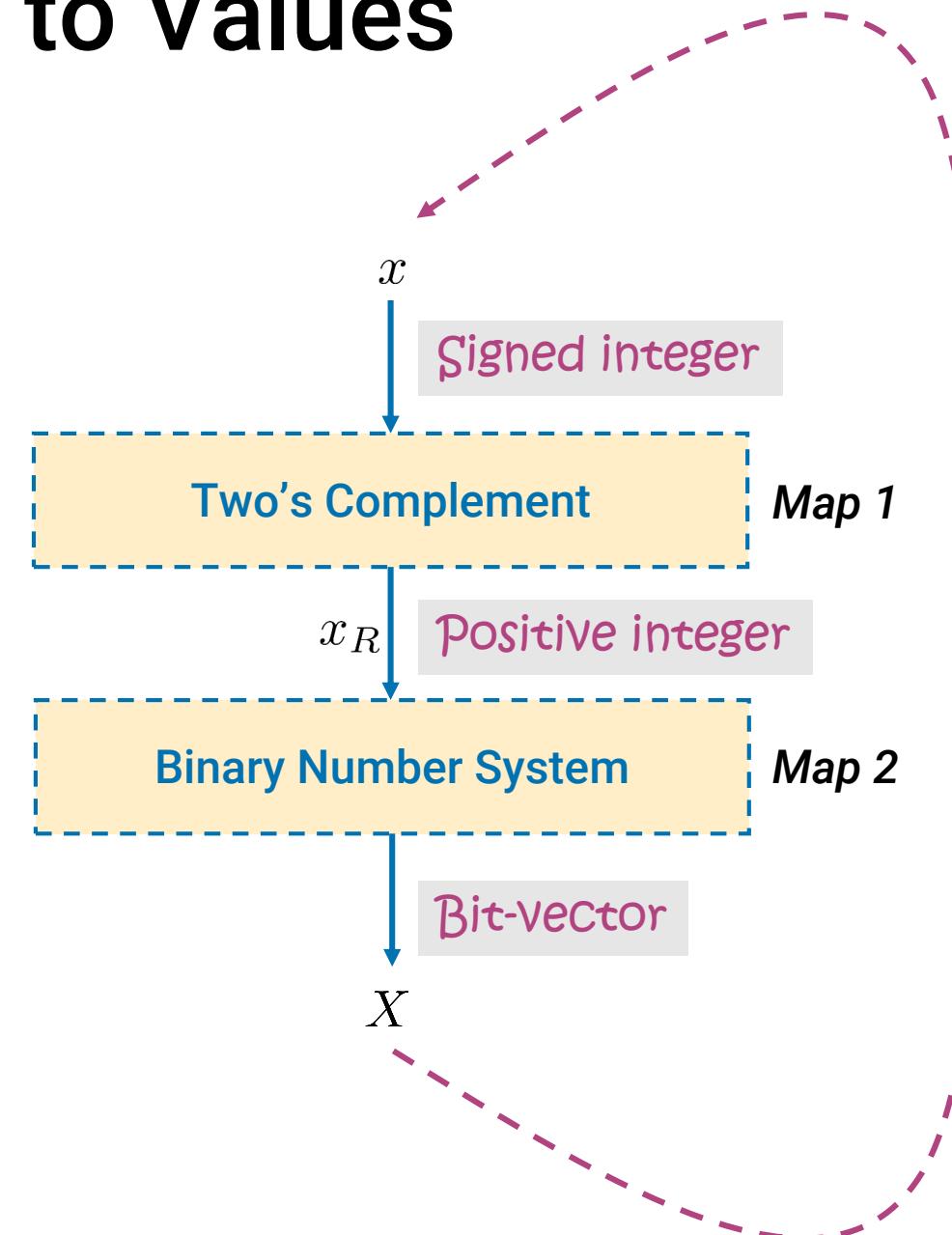
$$x = x_R$$

$$= \sum_{i=0}^{n-1} X_i 2^i$$

$$= X_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i$$

ZERO

$$= \sum_{i=0}^{n-2} X_i 2^i$$



Mapping from Bit-Vectors to Values

in Two's Complement System

▪ **Negative** x :

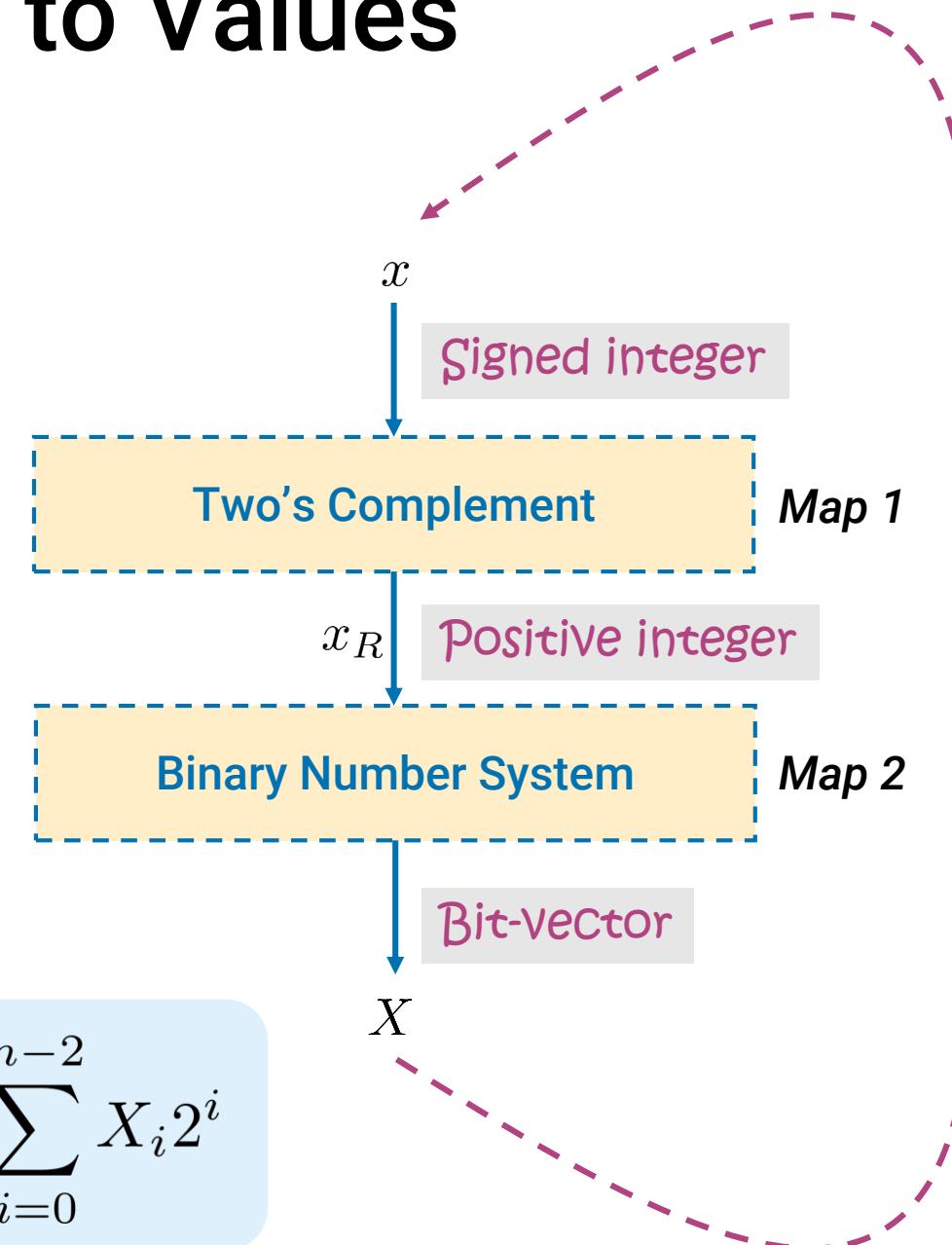
$$x = x_R - C = \sum_{i=0}^{n-1} X_i 2^i - 2^n$$

$$= X_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i - 2^n$$

ONE

$$= 2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i - 2^n$$

$$= -2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i = -X_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i$$



Mapping from Bit-Vectors to Values

Example: Two's Complement System

- Examples

$$X = 011011_2 = 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 16 + 8 + 2 + 1 = 27_{10}$$

$$X = 11011_2 = -1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = -16 + 8 + 2 + 1 = -5_{10}$$

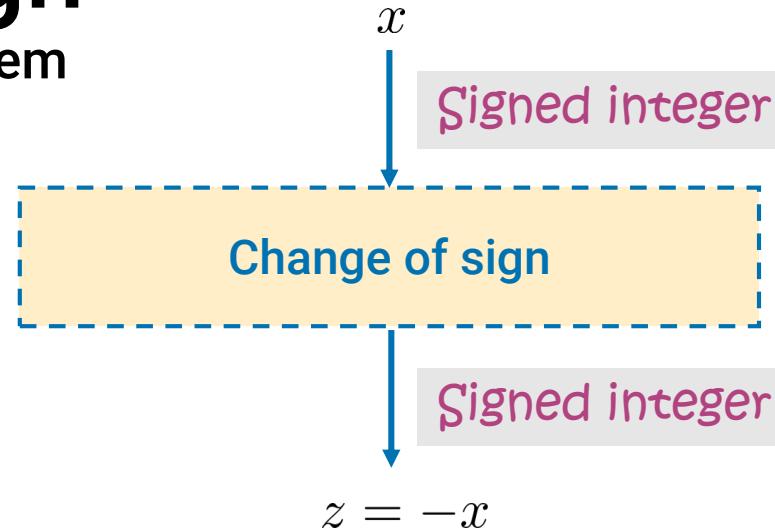
$$X = 10000000_2 = -1 \cdot 2^7 = -128_{10}$$

$$X = 10000011_2 = -1 \cdot 2^7 + 1 \cdot 2^1 + 1 \cdot 2^0 = -128 + 2 + 1 = -125_{10}$$

Change of Sign

in Two's Complement System

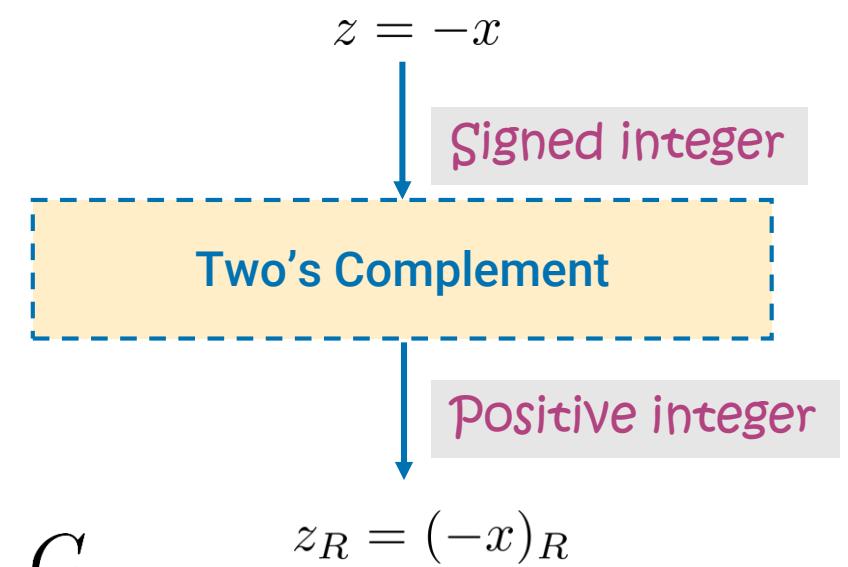
- Find $z = -x$



- As x and z are represented as x_R and z_R :

$$\begin{aligned} z_R &= (-x)_R = (-x) \bmod C \\ &= C - (x \bmod C) \\ &= C - x_R \end{aligned}$$

- Therefore, the change of sign operation consists of **subtracting x_R from the complementation constant C**



Change of Sign Algorithm

in Two's Complement System

- Recall: In a two's complement system, the complement of an n -bit number is obtained by subtracting it from 2^n
 - Equivalent to **complementing** each of the n bits and summing with **+1** (proof in literature)

$$17_{10} = 00010001_2$$

Change of polarity

Complement

$$\begin{array}{r} 11101110 \\ +1 \\ \hline 11101111_2 \end{array}$$

Add +1

$$= -17_{10}$$

$$-99_{10} = 10011101_2$$

Change of polarity

Complement

$$\begin{array}{r} 01100010 \\ +1 \\ \hline 01100011_2 \end{array}$$

Add +1

$$= +99_{10}$$

Range Extension and Arithmetic Shifts

Range Extension

- Performed when a value x represented by a digit-vector of n bits needs to be represented by a digit-vector of m bits, $m > n$

$$x = z$$

$$X = (X_{n-1}, X_{n-2}, \dots, X_1, X_0)$$

$$Z = (Z_{m-1}, Z_{m-2}, \dots, Z_1, Z_0)$$

$$m > n$$

- Range extension is often performed in arithmetic operations

Range Extension Algorithm

in Sign-and-Magnitude System

- In sign-and-magnitude system, the range-extension algorithm becomes

$$z_s = x_s \quad \text{Sign}$$

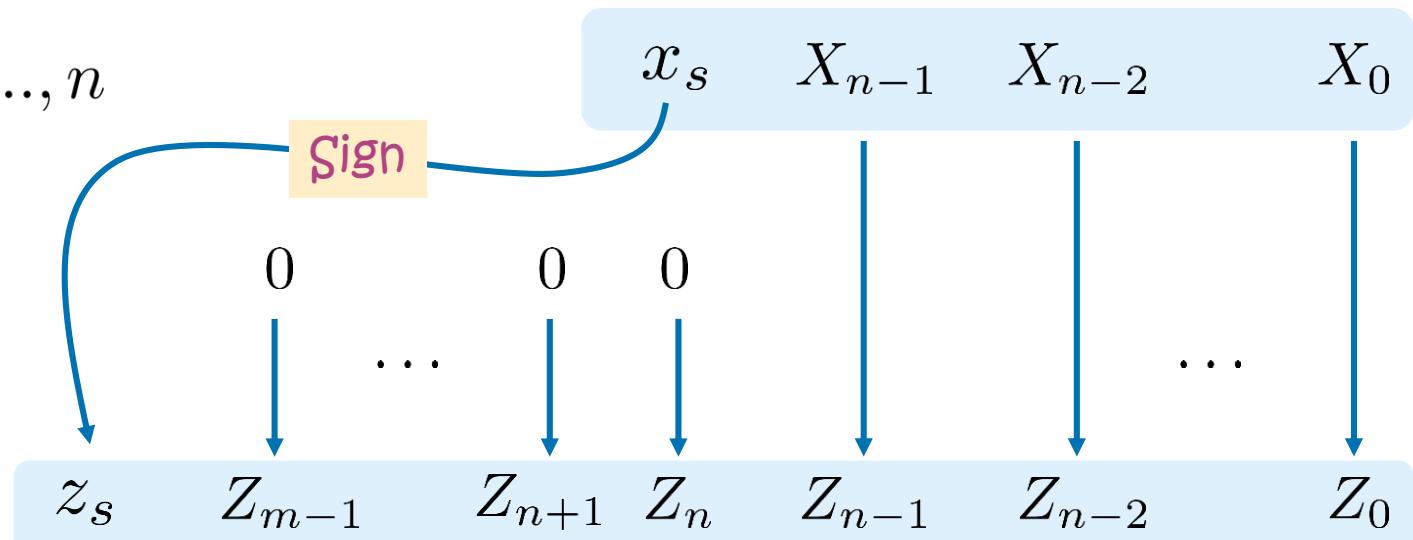
$$Z_i = 0, \quad i = m - 1, m - 2, \dots, n$$

$$Z_i = X_i, \quad i = n - 1, \dots, 0$$

- Example:

$$X = 1101101_2 = -45_{10}$$

$$X = 100101101_2 = -45_{10}$$



Range Extension Algorithm

in Two's Complement System

- In two's complement system, the range-extension algorithm becomes

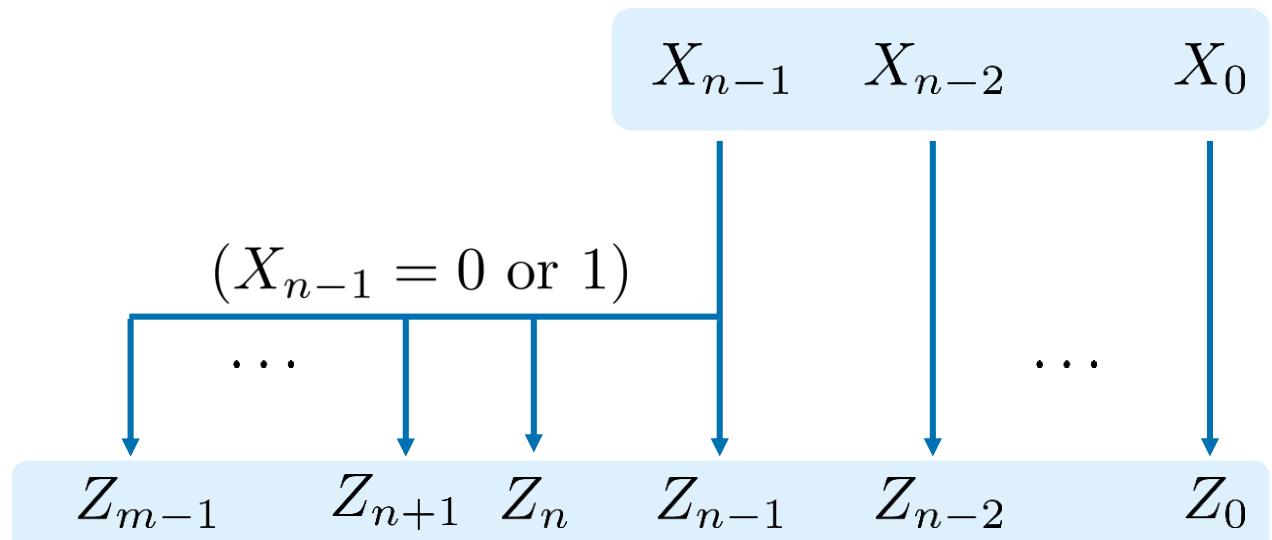
$$Z_i = X_{n-1}, \quad i = m-1, m-2, \dots, n$$

$$Z_i = X_i, \quad i = n-1, \dots, 0$$

- Example:

$$X = 10101_2 = -11_{10}$$

$$X = 11110101_2 = -11_{10}$$



Arithmetic Shifts

- Two elementary transformations often used in arithmetic operations are scaling (multiplying and dividing) by the radix
- Conventional radix-2 number system for integers:
 - **Left** arithmetic shift: **multiplication** by 2

$$z = 2x$$

- **Right** arithmetic shift: **division** by 2

$$z = 2^{-1}x - \epsilon, \quad |\epsilon| < 1$$

where the value of ϵ is such that it makes z an integer

Left Arithmetic Shift

in Sign-and-Magnitude System

- Algorithm (assuming the overflow does not occur)

$$z_s = x_s \text{ Sign}$$

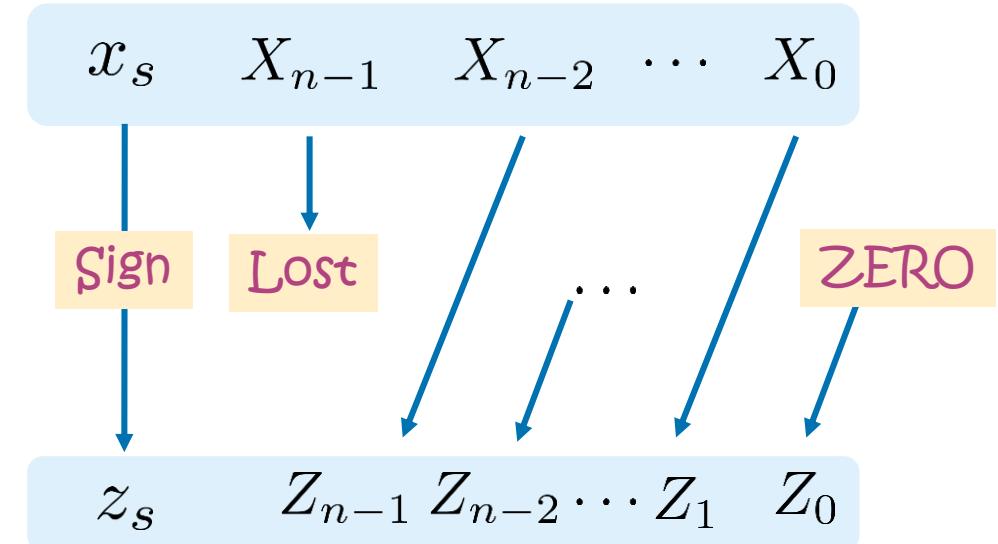
$$Z_{i+1} = X_i, \quad i = 0, \dots, n-2$$

$$Z_0 = 0$$

- Example:

$$X = 100101101_2 = -45_{10}$$

$$\text{SL}(X) = 101011010_2 = -90_{10}$$



Right Arithmetic Shift

in Sign-and-Magnitude System

- Algorithm

$$z_s = x_s \text{ Sign}$$

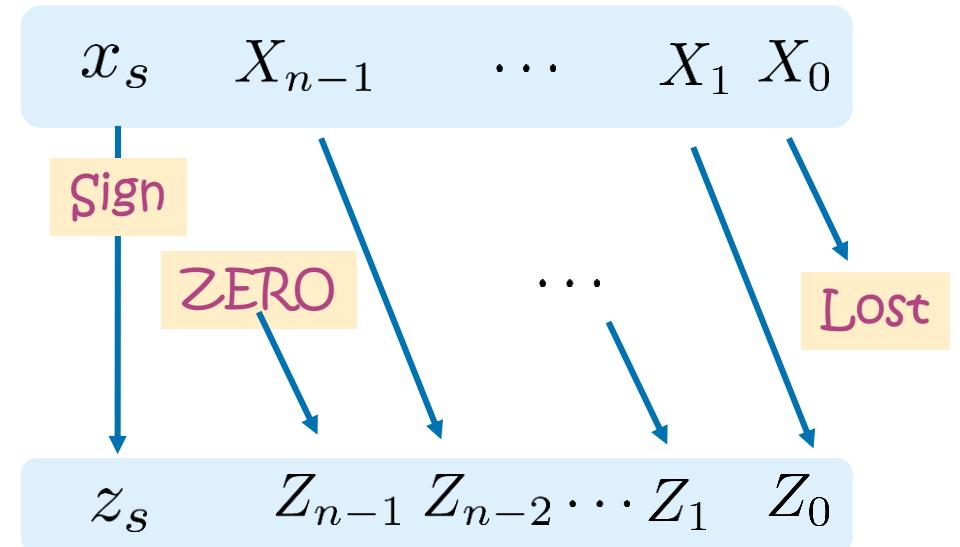
$$Z_{i-1} = X_i, \quad i = 1, \dots, n-1$$

$$Z_{n-1} = 0$$

- Example

$$X = 100101101_2 = -45_{10}$$

$$\text{SR}(X) = 100010110_2 = -22_{10}$$



Left Arithmetic Shift

in Two's Complement System

- Algorithm (assuming the overflow does not occur)

$$Z_{i+1} = X_i, \quad i = 0, \dots, n-2$$

$$Z_0 = 0$$

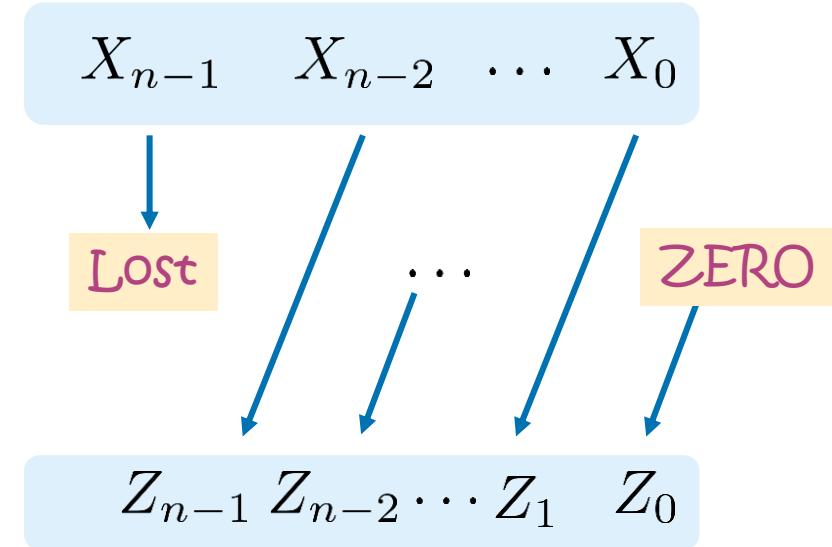
- Examples:

$$X = 001101_2 = 13_{10}$$

$$\text{SL}(X) = 011010_2 = 26_{10}$$

$$Y = 110101_2 = -11_{10}$$

$$\text{SL}(Y) = 101010_2 = -22_{10}$$



Right Arithmetic Shift

in Two's Complement System

- Algorithm

$$Z_{n-1} = X_{n-1}$$

$$Z_{i-1} = X_i, \quad i = 1, \dots, n-1$$

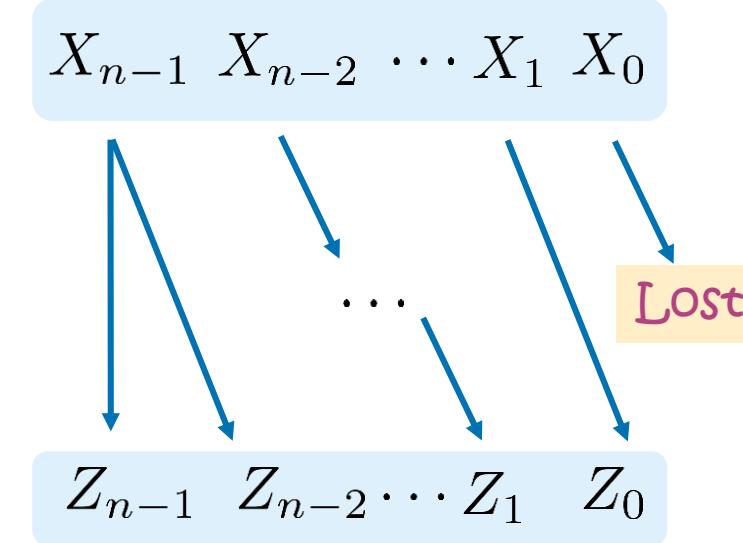
- Examples:

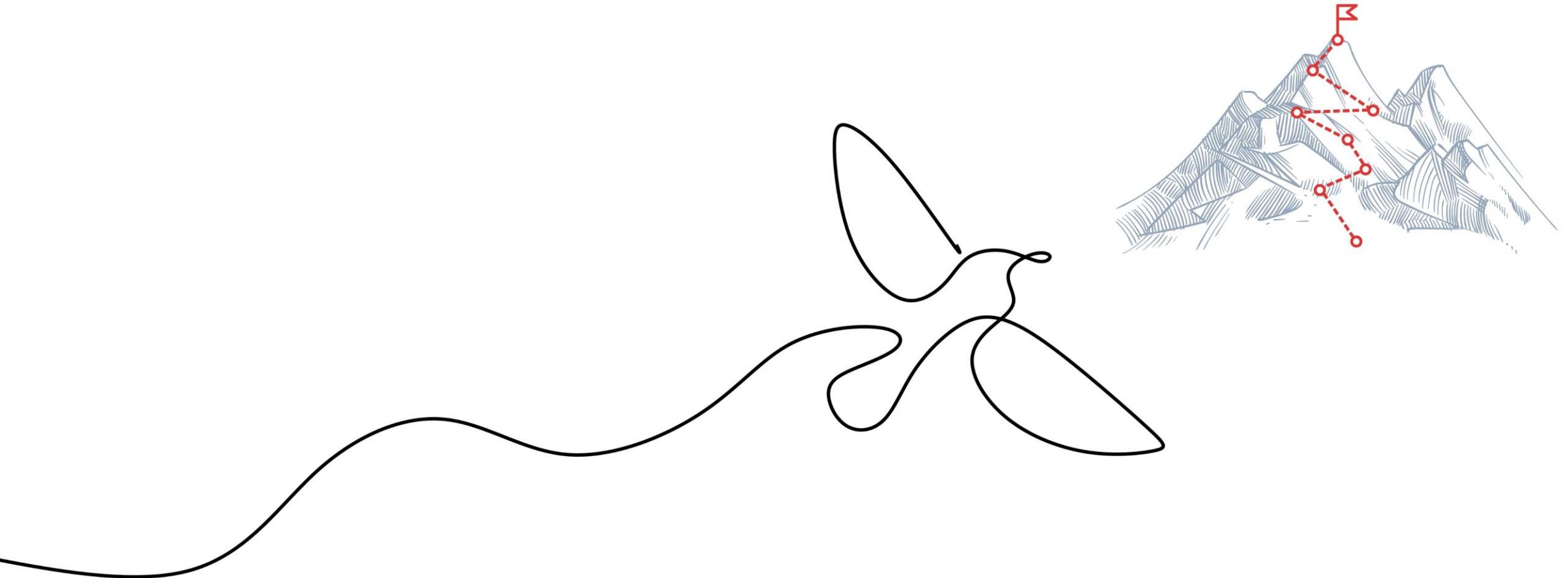
$$X = 001101_2 = 13_{10}$$

$$\text{SR}(X) = 000110_2 = 6_{10}$$

$$Y = 110101_2 = -11_{10}$$

$$\text{SR}(Y) = 111010_2 = -6_{10}$$





Codes

Alternative Codes

Hamming Weight and Distance

- Named by [Richard Hamming](#), *inventor of error-correcting codes which bear his name, and of the aphorism "The Purpose of computing is insight, not numbers," and many others.*
- Hamming weight
 - The number of binary ones (1) in a bit vector
 - E.g., $\text{HW}(11010101) = 5$
- Hamming distance between two equal-length bit vectors
 - The number of positions in which they differ
 - E.g., $\text{HD}(11010101, 01000111) = 3$

Binary Code for Decimal Numbers (BCD)

Conversion Algorithms

- BCD encodes decimal digits 0 through 9 by their 4-bit unsigned binary representations, 0000 through 1001; the code words 1010 through 1111 are not used
- Conversion algorithms:

Given n BCD digits d_i , compute the corresponding binary value D

```
1: i = n-1; D = 0
2: Multiply D by 10
3: add  $d_i$  to D
4: i = i - 1
5: Go back to line 2 if  $i >= 0$ 
```

Given a binary value D , convert it into the corresponding set of BCD digits

```
1: i = 0;
2: Divide D by 10; D = the quotient
3:  $d_i$  = the remainder
4: i = i + 1
5: Go back to line 2 if  $i <= n-1$ 
```

Gray Code

- Invented by [Frank Gray](#), a physicist and researcher at [Bell Labs](#) who made numerous innovations in television, both mechanical and electronic, and is remembered for the [Gray code](#).
- Gray code is an ordering of the binary numbers such that **two successive values differ in only one bit**
- Gray codes are widely used to prevent spurious output from [electromechanical switches](#) and to facilitate [error correction](#) in digital communications

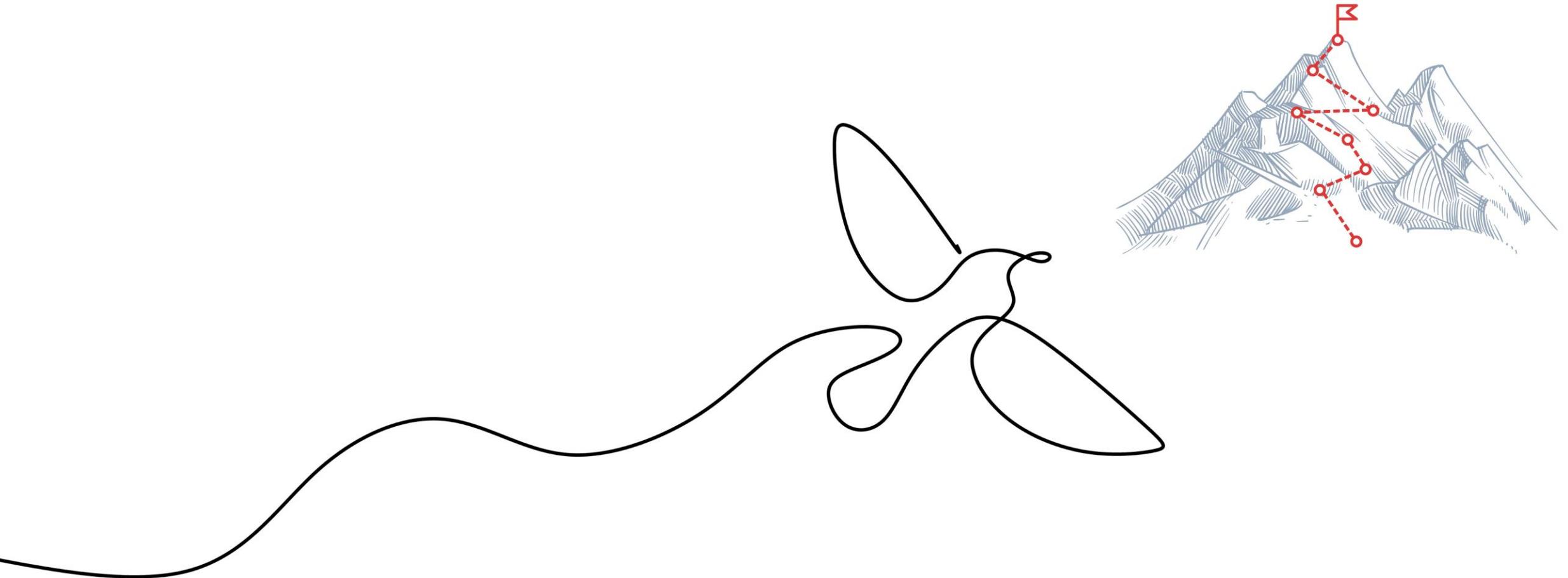
Gray Code

Conversion Algorithm

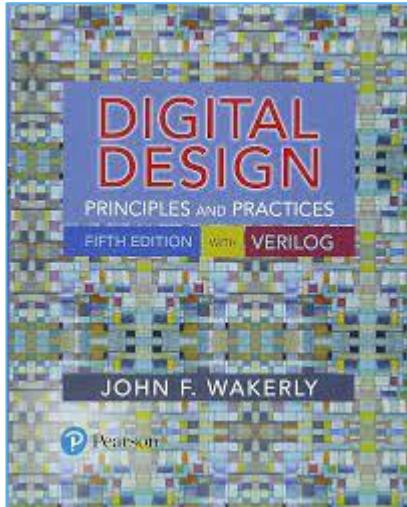
- Deriving a code word in an n-bit Gray-code from the corresponding n-bit binary code
 - The bits of an n-bit binary or Gray code are numbered from right to left, from 0 to n-1
 - Bit i of a Gray-code vector is 0 if bits i and $i+1$ of the binary vector are the same; else, bit i is 1;
 - when $i+1 = n$, bit n of the binary vector is considered to be zero

- Comparison of 3-bit binary and Gray codes

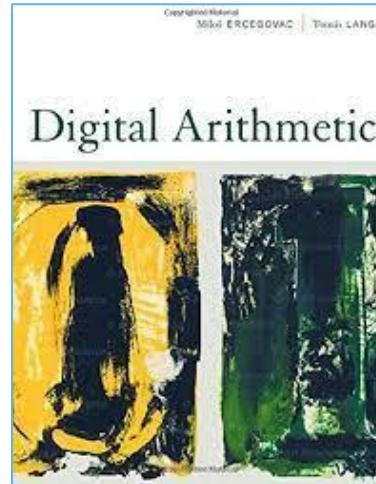
Decimal	Binary	Gray
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100



Literature



- Chapter 2: Number Systems and Codes
 - 2.1–2.3
 - 2.5
 - 2.10
 - 2.11



- Chapter 1: Preview of Basic Number Representations and Arithmetic Algorithms
 - 1.1
 - 1.2
 - 1.4

Glossary

- [Precision](#)
- [Digit-vector](#)
- [Least-significant/most-significant bit](#)
- [\(Non\)Redundant](#)
- [Weighted](#)
- [Radix](#)
- [Canonical](#)
- [Conventional](#)
- [Sign-and-magnitude](#)
- [True-and-complement](#)
- [Two's complement](#)
- [Range extension](#)
- [Arithmetic shifts](#)
- [Hamming weight](#)
- [Hamming distance](#)
- [Binary Code for Decimal \(BCD\)](#)
- [Gray code](#)