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A (Little) Bit of Information

▪ A bit is the most basic unit 
of information in digital 
computing and communication

▪ A logical state with one
of two possible values (binary)

▪ In modern devices, a bit typically corresponds to an electrical 
state ON or OFF (charged or discharged, voltage high or low, etc.)

▪ Bits are small → so we group them into vectors or strings
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Let’s Talk About…
…Number systems and codes
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Learning Outcomes

▪ Familiarize with the general characteristics of
number systems (radix, weights, digit vectors…)

▪ Learn to represent decimal  numbers as binary numbers

▪ Discover octal/hex systems and their relation to binary

▪ Master representations of nonnegative and signed binary numbers

▪ Perform sign extension and arithmetic shifts

▪ Discover some alternative number codes
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Quick Outline

▪ Representations of nonnegative integers

▪ Transformations binary/octal/hex to/from decimal

▪ Transformations octal/hex to/from binary

▪ Representations of signed integers
• Sign-and-magnitude

• Two’s complement

▪ Range extension and arithmetic shifts

▪ Hamming, BCD, Gray codes
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Digital Representations

▪ In mathematics, a tuple is a finite ordered sequence of elements
• An n-tuple is a tuple of n elements, where n is a nonnegative integer

▪ In a digital representation, a number is represented by 
an ordered n-tuple
• Each element of the n-tuple is called a digit

• The n-tuple is called a digit vector (or string of digits)

• The number of digits n is called the precision of the representation
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Representation of 
Nonnegative Integers
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Integer Digit-Vector

▪ Digit-vector (string) representing the integer     is denoted by

▪ Least-significant digit (also called low-order digit):

▪ Most-significant digit (also called high-order digit):
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Elements of a Number System

▪ The number system to represent the integer      consists of
• The number of digits

• A set of numerical values for the digits
• If a set of values for a digit         is       , the cardinality of       is

• A rule of interpretation

• Mapping between the set of digit-vector values and the set of integers

▪ Set size
• The set of integers is a finite set of at most      elements
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Elements of a Number System
Example: Decimal Number System

▪ Number of digits
• Can be any, but let us consider     = 6 (e.g., 17, 9899, 676799, …)

• Leading zeros are irrelevant

▪ Digit set in decimal number system
• of cardinality 10

▪ The corresponding set size      is one million values, from 0 to 
•
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(Non)Redundant Number Systems

▪ A number system is nonredundant if…
• …each digit-vector represents a different integer

• E.g., the decimal system is nonredundant as every number is unique

▪ Alternatively, a number system is redundant if…
• …there are integers represented by more than one digit-vector
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Weighted (Positional) Number Systems

▪ Most frequently used number systems are weighted systems

▪ The rule of representation:

where                                              is the weight-vector of size

▪ Equivalent formulation
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Weighted (Positional) Number Systems
Example: Decimal Number System

▪ Weights are a power of 10. Example:
• Digit vector 

• Weight vector 

▪ When weights are of the format 
• and 

•

we have a radix number system
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Radix Number Systems

▪ …are weighted number system in which the weight vector is 
related to the radix vector

as follows

▪ Equivalent to

▪ E.g., in the decimal number system
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Fixed- and Mixed-Radix Number Systems

▪ In a fixed-radix system, all elements of the radix-vector have 
the same value r (the radix)

▪ The weight vector in a fixed-radix system

and the integer      becomes

▪ In a mixed-radix system, the elements of the radix-vector differ
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Radix Number Systems
Example: Decimal Number System

▪ Characteristics of the decimal number system
• Radix

• Fixed-radix system
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Number Systems

What fixed- and mixed-radix systems are most interesting to us?
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Fixed

▪ Decimal – radix 10

▪ Binary – radix 2

▪ Octal – radix 8

▪ Hexadecimal – radix 16

Mixed

▪ E.g., time representation in terms of 
hours/minutes/seconds

• Radix-vector

R = (24, 60, 60)

• Weight-vector

W = (3600, 60, 1)



▪ In a canonical number system, the set of values for a digit        is

with                   , the corresponding element of the radix vector

▪ Canonical digit sets with fixed radix:
• Decimal: {0, 1, …, 9}; Binary: {0, 1}; Hexadecimal: {0, 1, 2, …, 15} 

▪ Range of values of     represented with n fixed-radix-r digits:

Canonical Number Systems
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Conventional Number Systems

▪ A system with 
• fixed positive radix r and 

• a canonical set of digit values is called

a radix-r conventional number system

▪ These are by far the most commonly used number systems
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Binary/Octal/Hexadecimal
to/from Decimal
Transformations of nonnegative numbers
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Conversion Table
Up to 15

CS-173, © EPFL, Spring 2025

Decimal
Binary

4-digit vector
Octal

2-digit vector
Hexadecimal
1-digit vector

0 0000 00 0

1 0001 01 1

2 0010 02 2

3 0011 03 3

4 0100 04 4

5 0101 05 5

6 0110 06 6

7 0111 07 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

▪ The hexadecimal system
supplements 0-9 digits 
with the letters A-F

▪ Programming languages
often use the prefix 0x to 
denote a hexadecimal number
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Transformations
Example: Binary/Decimal

▪ Converting from binary to decimal

▪ Converting from decimal to binary
• Digits can be computed as remainders of the long division by 2
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Least-significant binary digit
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Transformations
Example: Octal/Decimal

▪ Converting from octal to decimal

▪ Converting from decimal to octal
• Digits can be computed as remainders of the long division by 8
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Stop once zero

Least-significant octal digit

Most-significant octal digit
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Transformations
Example: Hexadecimal/Decimal

▪ Converting from hexadecimal to decimal

▪ Converting from decimal to hexadecimal
• Digits can be computed as remainders of the long division by 16
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Stop once zero

Least-significant hexadecimal digit

Most-significant hexadecimal digit



Octal/Hexadecimal
to/from Binary
Transformations of nonnegative numbers
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Bit-Vector Representation

▪ For arithmetic operations 
in radix-2/8/16 digital 
systems, digit-vectors are 
represented by bit-vectors

▪ Methodology
• A code for mapping a digit to a bit-vector is defined

• Digit-vector is obtained by mapping each of its digits following the code
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Codes
Bit-Vector Representation

▪ Binary
• Digits 0 and 1 are represented by values 0 and 1, resp.

▪ Power-of-two radix    (octal, hex)
• Digit       is represented by a bit-vector 

where                          bits,

such that  

• E.g., digit in the hexadecimal (radix-16) format is represented by 
a 4-bit binary vector/string 
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Transformations
Example: Binary/Octal

▪ Converting from binary to octal,  
• Group every three binary digits into a single octal digit

▪ Converting from octal to binary
• Exactly the reverse, expand each octal digit into three binary digits
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Transformations
Example: Binary/Hexadecimal

▪ Converting from binary to hexadecimal,  
• Group every four binary digits into a single hexadecimal digit

▪ Converting from hexadecimal to binary
• Exactly the reverse, expand each hex digit into four binary digits
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Representation of 
Signed Integers
Signed ~ Positive and Negative

• Sign and magnitude

• True and complement
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Sign-and-Magnitude

CS-173, © EPFL, Spring 2025



Sign-and-Magnitude (SM)

▪ A signed integer      is represented by a pair

where       is the sign and       is the magnitude (positive integer)

▪ Sign (positive, negative) is represented by a binary variable
• 0→ positive; 1 → negative

▪ Magnitude can be represented as any positive integer
• In a conventional radix-r system, the range of n-digit magnitude is
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How is Zero Represented in SM?

▪ Two representations
• Positive zero

• Negative zero

▪ Is SM a redundant or nonredundant number system?
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Sign-and-Magnitude
Examples

▪ Traditionally, the most-significant bit of a binary bit string 
is used as the sign bit

▪ Examples:
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Sign-and-Magnitude
Range

▪ Symmetrical number system
• Equal number of positive and negative integers

▪ An n-bit integer in sign-and-magnitude lies within the range

▪ Main disadvantage of SM: complex digital circuits for 
arithmetic operations (addition, subtraction, etc.)
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True-and-Complement
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True-and-Complement (TC)

▪ No separation between 
the representation of the sign 
and the representation of 
the magnitude
• Signed integer is represented 

by a positive integer
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True-and-complement system

Code (any of the number 
systems for positive integers)

Positive integer

Digit-vector

Map 1

Map 2

Signed integer



True-and-Complement
Mapping

▪ A signed integer      is represented by a positive integer       :

is a positive integer called the complementation constant

▪ For               , by the definition of the modulo function, we have
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True form

Complement form



▪ Recall:

▪ To have an unambiguous representation, the two regions should 
not overlap, translating to the following condition:

True-and-Complement
Unambiguous Representation
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True form

Complement form

Overlap!



True-and-Complement
Converse Mapping

▪ Converse mapping:

▪ When                   , it is usually assigned to
• Asymmetrical representation, but simplifies sign detection

▪ The choice of              defines a two’s complement system  

CS-173, © EPFL, Spring 2025

Positive values

Negative values



Two’s Complement System

▪ Complementation constant 

▪ Range is asymmetrical:

▪ The representation of zero is unique
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0 0

True forms
(positive)

1 1

2 2

… …

Complement 
forms

(negative)… …

-2

-1



Sign Detection
in Two’s Complement System

▪ Since                     and assuming the sign is 0 for positive 
and 1 for negative numbers:

▪ Therefore, the sign is determined from the most-significant bit:

; equivalent to
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Mapping from Bit-Vectors to Values
in Two’s Complement System

▪ Positive : 
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Two’s Complement

Binary Number System

Positive integer

Bit-vector

Map 1

Map 2

Signed integer

ZERO



Mapping from Bit-Vectors to Values
in Two’s Complement System

▪ Negative : 
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Two’s Complement

Binary Number System

Positive integer

Bit-vector

Map 1

Map 2

Signed integer

ONE
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Mapping from Bit-Vectors to Values
Example: Two’s Complement System

▪ Examples
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▪ Find

▪ As     and    are represented as        and      :

▪ Therefore, the change of sign operation
consists of subtracting from 

the complementation constant

Change of Sign
in Two’s Complement System
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Change of sign

Signed integer

Signed integer

Two’s Complement

Signed integer

Positive integer
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Change of Sign Algorithm
in Two’s Complement System

▪ Recall: In a two’s complement system, the complement of an 
-bit number is obtained by subtracting it from 
• Equivalent to complementing each of the     bits and 

summing with +1 (proof in literature)
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Complement

Add +1

Complement

Add +1

Change of
polarity

Change of
polarity



Range Extension 
and Arithmetic Shifts
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Range Extension

▪ Performed when a value     represented by a digit-vector of     bits 
needs to be represented by a digit-vector of       bits, 

▪ Range extension is often performed in arithmetic operations
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Range Extension Algorithm
in Sign-and-Magnitude System

▪ In sign-and-magnitude system, 
the range-extension algorithm becomes 

▪ Example:
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Sign

Sign



Range Extension Algorithm
in Two’s Complement System

▪ In two’s complement system, 
the range-extension algorithm becomes 

▪ Example:
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Arithmetic Shifts

▪ Two elementary transformations often used in arithmetic 
operations are scaling (multiplying and dividing) by the radix

▪ Conventional radix-2 number system for integers:
• Left arithmetic shift: multiplication by 2

• Right arithmetic shift: division by 2

where the value of      is such that it makes     an integer
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Left Arithmetic Shift
in Sign-and-Magnitude System

▪ Algorithm (assuming the overflow does not occur)

▪ Example:
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Sign

ZERO Lost

Sign

Right Arithmetic Shift
in Sign-and-Magnitude System

▪ Algorithm

▪ Example
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Left Arithmetic Shift
in Two’s Complement System

▪ Algorithm (assuming the overflow does not occur)

▪ Examples:
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Lost

Right Arithmetic Shift
in Two’s Complement System

▪ Algorithm

▪ Examples:

CS-173, © EPFL, Spring 2025



CS-173, © EPFL, Spring 2025



Codes
Alternative Codes
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Hamming Weight and Distance

▪ Named by Richard Hamming, inventor of 
error-correcting codes which bear his name, 
and of the aphorism "The Purpose of computing 
is insight, not numbers," and many others.

▪ Hamming weight
• The number of binary ones (1) in a bit vector

• E.g., 

▪ Hamming distance between two equal-length bit vectors
• The number of positions in which they differ

• E.g., 
CS-173, © EPFL, Spring 2025

https://history.computer.org/pioneers/hamming.html


Binary Code for Decimal Numbers (BCD)
Conversion Algorithms

▪ BCD encodes decimal digits 0 through 9 by their 4-bit unsigned 
binary representations, 0000 through 1001; 
the code words 1010 through 1111 are not used

▪ Conversion algorithms:
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1: i = 0; 
2: Divide D by 10; D = the quotient
3: di = the remainder
4: i = i + 1
5: Go back to line 2 if i<=n-1

Given a binary value D, convert it into the 
corresponding set of BCD digits

1: i = n-1; D = 0
2: Multiply D by 10 
3: add di to D
4: i = i – 1
5: Go back to line 2 if i>=0

Given n BCD digits di, compute
the corresponding binary value D



Gray Code

▪ Invented by Frank Gray, a physicist and researcher at
Bell Labs who made numerous innovations in television, 
both mechanical and electronic, and is remembered 
for the Gray code.

▪ Gray code is an ordering of the binary numbers such that 
two successive values differ in only one bit

▪ Gray codes are widely used to prevent spurious output 
from electromechanical switches and to facilitate error 
correction in digital communications

CS-173, © EPFL, Spring 2025

https://en.wikipedia.org/wiki/Frank_Gray_(researcher)
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Gray_code
https://en.wikipedia.org/wiki/Electromechanical
https://en.wikipedia.org/wiki/Switch
https://en.wikipedia.org/wiki/Error_correction


Gray Code
Conversion Algorithm

▪ Deriving a code word in an n-bit 
Gray-code from the corresponding 
n-bit binary code
• The bits of an n-bit binary or Gray 

code are numbered from right to left, 
from 0 to n-1

• Bit i of a Gray-code vector is 0 if bits 
i and i+1 of the binary vector are 
the same; else, bit i is 1; 
• when i+1 = n, bit n of the binary vector 

is considered to be zero

▪ Comparison of 3-bit binary 
and Gray codes
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Decimal Binary Gray

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100
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Literature
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▪ Chapter 2: Number Systems and Codes
▪ 2.1–2.3
▪ 2.5
▪ 2.10
▪ 2.11

▪ Chapter 1: Preview of Basic Number 
Representations and Arithmetic Algorithms
▪ 1.1
▪ 1.2
▪ 1.4



Glossary

▪ Precision

▪ Digit-vector

▪ Least-significant/most-significant bit

▪ (Non)Redundant 

▪ Weighted

▪ Radix

▪ Canonical

▪ Conventional

▪ Sign-and-magnitude

▪ True-and-complement

▪ Two’s complement

▪ Range extension

▪ Arithmetic shifts

▪ Hamming weight

▪ Hamming distance

▪ Binary Code for Decimal (BCD)

▪ Gray code
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